
 Special	
 Publication	
 500-­‐273	
 Special	
 Publication	
 500-­‐273

	

Internal	
 Group	
 Report	

Feb	
 12,	
 2013

	

SAJACC Working Group

Recommendations to NIST

National Institute of Standards and
Technology

NIST Cloud Computing
Standards Acceleration to Jumpstart Adoption
of Cloud Computing (SAJACC) Working Group

Phase I group report and recommendations

as presented at and incorporating input from the
NIST Joint Cloud Computing and

Big Data Workshop & Forum

January 15-17, 2013

	

NIST SAJACC Working Group Page 2 February 12, 2013

Executive Summary and Recommendations
The NIST Cloud Computing “Standards Acceleration to Jumpstart Adoption of Cloud Computing”
(SAJACC) Working Group pursued a strategic process to facilitate development of testing
methodologies applicable to cloud computing products and standards. The purpose of this process
was to create formal US Government (USG)-based use cases and validation mechanisms that
would ensure identification of the detailed capabilities of cloud computing products and standards
in terms of their ability to support the US Government’s “Cloud First” information technology
strategy, and to test cloud computing products and standards against these use cases.

The SAJAAC process was designed to incorporate the output of other NIST Cloud Computing
working groups where possible, especially that of the Business Use Case Working Group, and to
identify specific features that reflect USG priorities for cloud computing, which include aspects
related to security, interoperability and portability. Future work is anticipated to extend the
SAJACC framework to features that touch on other recently identified priorities, including
aspects of accessibility and performance. By constantly integrating such aspects identified by
other related NIST Cloud Computing topical work, the NIST SAJAAC process is designed to
produce a validation process that will help support a sustainable, secure USG cloud infrastructure.

This working group report captures the results of this process to date and makes the following
conclusions and recommendations to NIST to proceed from Phase I to future Phase II work of the
SAJACC group:

1. Replace the SAJACC use case internal organization with one based on the current
structure of the NIST Cloud Computing Reference Architecture and Taxonomy;

2. Add further use cases based on current extensions to this taxonomy for recently
developed Cloud SLA Metrics and NIST Cloud Computing Security components;

3. Integrate further input as necessary from the NIST Business Use Case and Standards
Roadmap groups, and work closely with these groups to identify additional use cases;

4. Study and adopt use case template elements from the US VA Bronze, Silver and Gold
Use Cases and from additional formal input from US Government agencies;

5. Add automation and tooling, if possible, to the NIST web site to support community
downloading of the NIST SAJACC use cases and their associated templates for testing
scenarios and uploading of externally produced test results;

6. Conduct, invite and document additional use case demonstrations of cloud standards and
applicable products against the SAJACC use cases to illustrate their features;

7. Solicit and add further recommendations from the community at large through meetings
of the SAJACC working group.

This report therefore comprises the conclusion of Phase I of the SAJACC process to date, and the
plan for initiation of Phase II with the goal to implement the above recommendations.

NIST SAJACC Working Group Page 3 February 12, 2013

Acknowledgements
This report captures the results of a community-based input process that began at the May 11,
2010 Gaithersburg Use Case workshop led by NIST staff member Lee Badger, and continued by
participants in that workshop and by subsequent SAJACC WG members, including Lee Badger,
Jin Tong, Babak Jahromi, Hemma Prafullchandra, Alan Sill and Gregg Brown over the course of
the 2010-2011 time period to produce the first online SAJACC Use Case list. The current
document reflects ongoing contributions and discussions by the membership of the NIST Cloud
Computing SAJACC Working Group, chaired during the 2012 time frame by Alan Sill of Texas
Tech University and Eugene Luster of R2AD Corporation.

The document also contains material gathered from reports and group output from the NIST
Cloud Computing Reference Architecture and Taxonomy Working Group led by Robert Bohn
and John Messina, the NIST Cloud Computing Standards Roadmap group chaired by Michael
Hogan and Annie Sokol, the NIST Cloud Computing Reference Architecture and Taxonomy
Cloud Service Level Agreement subgroup chaired by Frederic Devaulx and the NIST Cloud
Computing Security group chaired by Michaela Iorga and Lee Badger. Such input from these
latter groups is largely in the form of transcriptions of the mind maps and organizational
structures of the output documents and public meeting notes of those groups; any errors in
transcription of these results should be blamed on the current authors of this report and are not
intended to reflect the complete output of those groups.

This report has been authored by the current NIST Cloud Computing SAJACC Working Group
chairs, Eugene Luster and Alan Sill, based on the entire collected SAJACC community TWiki
contents and meeting notes, with substantial input from the current working group members. It
represents a transcription of the current SAJACC Use Cases along with suggestions for future
reconfiguration. Specific acknowledgement is made of valuable input provided the NIST
SAJACC Working Group during this process, including but not limited to the following members
(listed in alphabetical order):

Lee Badger (NIST); Brent Bachorik (Fusion PPT); Dick Brackney (Microsoft), John Calhoon
(Microsoft); Beth Chinn (IITA/BICES); Yuri Demchenko (UvA, NL); Dave Harper (JHU/APL);
Jenny Huang (AT&T); A. Larry Gurule (Computer Sciences Corporation); Molly Johnson (US
Department of Navy); Nancy Landreville (USVA); Eugene Luster (R2AD Corporation LLC);
Shamun Mahmud (DLT Solutions); Tom Mancuso (SNIA), Gary Mazzaferro (AlloyCloud Inc.),
Steven McGee (SAW Concepts); Linda Pelekoudas (SDS); Frank Peluso (Centuric); Rod
Peterson (USVA); Gilbert Pilz (Oracle); Anh-Hong Rucker (NASA JPL); Alan Sill (Texas Tech
University), Eric Simmon (NIST); Annie Sokol (NIST); Ken Stavinoha (Cisco); Steve Woodward
(Woodward Systems).

NIST SAJACC Working Group Page 4 February 12, 2013

Table of Contents
Executive	
 Summary	
 and	
 Recommendations	
 ..	
 2	

Acknowledgements	
 ..	
 3	

1.	
 Introduction	
 ...	
 6	

2.	
 Terminology	
 and	
 Structure	
 of	
 the	
 SAJACC	
 Use	
 Cases	
 ...	
 7	

2.1	
 Important	
 Actors	
 for	
 Public	
 Clouds	
 ...	
 8	

2.2	
 General	
 Organization	
 of	
 the	
 SAJACC	
 Use	
 Cases	
 ...	
 10	

3.	
 Cloud	
 Management	
 Use	
 Cases	
 ..	
 10	

3.1	
 Open	
 An	
 Account	
 ...	
 10	

3.2	
 Close	
 An	
 Account	
 ...	
 11	

3.3	
 Terminate	
 An	
 Account	
 ...	
 12	

3.4	
 Copy	
 Data	
 Objects	
 Into	
 A	
 Cloud	
 ..	
 12	

3.5	
 Copy	
 Data	
 Objects	
 Out	
 of	
 a	
 Cloud	
 ...	
 14	

3.6	
 Erase	
 Data	
 Objects	
 In	
 a	
 Cloud	
 ..	
 16	

3.7	
 VM	
 Control:	
 Allocate	
 VM	
 Instance	
 ..	
 17	

3.8	
 VM	
 Control:	
 Manage	
 Virtual	
 Machine	
 Instance	
 State	
 ..	
 18	

3.9	
 Query	
 Cloud-­‐Provider	
 Capabilities	
 and	
 Capacities	
 ..	
 19	

4.	
 Cloud	
 Interoperability	
 Use	
 Cases	
 ..	
 21	

4.1	
 Copy	
 Data	
 Objects	
 between	
 Cloud-­‐Providers	
 ..	
 22	

4.2	
 Dynamic	
 Dispatch	
 to	
 an	
 IaaS	
 Cloud	
 ...	
 22	

4.3	
 Cloud	
 Burst	
 From	
 Data	
 Center	
 to	
 Cloud	
 ...	
 23	

4.4	
 Migrate	
 a	
 Queuing-­‐Based	
 Application	
 ..	
 24	

4.5	
 Migrate	
 (fully-­‐stopped)	
 VMs	
 from	
 one	
 cloud-­‐provider	
 to	
 another	
 	
 25	

5.	
 Cloud	
 Security	
 Use	
 Cases	
 ..	
 26	

5.1	
 Identity	
 Management	
 -­‐	
 User	
 Account	
 Provisioning	
 ...	
 26	

5.2	
 Identity	
 Management	
 -­‐	
 User	
 Authentication	
 in	
 the	
 Cloud	
 ...	
 27	

5.3	
 Identity	
 Management	
 -­‐	
 Data	
 Access	
 Authorization	
 Policy	
 Management	
 in	
 the	

Cloud	
 ...	
 28	

5.4	
 Identity	
 Management	
 -­‐	
 User	
 Credential	
 Synchronization	
 Between	
 Enterprises	

and	
 the	
 Cloud	
 ...	
 29	

5.5	
 eDiscovery	
 ...	
 30	

5.6	
 Security	
 Monitoring	
 ..	
 30	

5.7	
 Sharing	
 of	
 access	
 to	
 data	
 in	
 a	
 cloud	
 ...	
 32	

6.	
 Future	
 Use	
 Cases	
 Candidates	
 ..	
 32	

6.1	
 Cloud	
 Management	
 Broker	
 ..	
 33	

6.2	
 Transfer	
 of	
 ownership	
 of	
 data	
 within	
 a	
 cloud	
 ...	
 40	

6.3	
 Fault-­‐Tolerant	
 Cloud	
 Group	
 ...	
 40	

7.	
 Examples	
 of	
 Validation	
 Tests	
 Conducted	
 Against	
 the	
 SAJACC	
 Use	
 Cases	
 	
 41	

NIST SAJACC Working Group Page 5 February 12, 2013

7.1	
 Examples	
 of	
 SAJACC	
 Use	
 Case	
 Reports	
 ...	
 42	

8.	
 Comparison	
 with	
 other	
 NIST	
 Cloud	
 Computing	
 Group	
 Organizational	

Structures,	
 Roadmaps,	
 and	
 Output	
 ...	
 50	

8.1	
 NIST	
 Cloud	
 Computing	
 Reference	
 Architecture	
 and	
 Taxonomy	
 	
 51	

8.2	
 NIST	
 Cloud	
 Computing	
 Security	
 ..	
 52	

8.4	
 US	
 VA	
 Bronze,	
 Silver	
 and	
 Gold	
 Use	
 Cases	
 ..	
 52	

8.5	
 Other	
 Sources	
 of	
 Input	
 ...	
 54	

8.6	
 Analysis	
 and	
 Recommendations	
 for	
 SAJACC	
 Use	
 Case	
 Reorganization	
 	
 54	

9.	
 Conclusions	
 ...	
 55	

Appendix	
 A:	
 Acronyms	
 and	
 Abbreviations	
 ...	
 57	

Appendix	
 B:	
 Glossary	
 ...	
 58	

Appendix	
 C:	
 Extended	
 Use	
 Cases	
 and	
 Use	
 Case	
 Templates	
 from	
 the	
 US	

Department	
 of	
 Veterans	
 Affairs	
 ...	
 59	

Background	
 and	
 Design	
 Philosophy	
 ..	
 59	

VA	
 Use	
 Case	
 Categories	
 ...	
 59	

Characteristics	
 of	
 VA	
 Use	
 Case	
 Templates	
 ...	
 60	

Listing	
 of	
 Current	
 VA	
 Use	
 Cases	
 ...	
 60	

Example	
 VA	
 Use	
 Case	
 ...	
 60	

Appendix	
 D:	
 Source	
 Code	
 Listings	
 for	
 Example	
 Use	
 Case	
 Demonstrations	
 	
 64	

References	
 ...	
 86	

	

NIST SAJACC Working Group Page 6 February 12, 2013

1. Introduction
Even though the origins of cloud computing (i.e., utility computing) date from the 1960s, cloud
computing in 2013 is still a youthful field. Accumulated advances in network capacity, nearly
ubiquitous connectivity, storage capacity, and efficient hardware virtualization have created new
business opportunities: cloud providers can now rent computing resources over network
connections to customers at costs that are very competitive with direct customer ownership.
Moreover, cloud-based resource rentals have the potential to be far more flexible and convenient
than resource ownership for end users. To maximize these opportunities, cloud providers are
inventing new tools to manage remote, network-accessed, rental computing resources. These
tools range from low-level system management utilities to new programming languages, new
middleware software stacks, and new scalable algorithms for computing on large collections of
data under the assumption that large numbers of compute and storage servers can be rapidly
provisioned under software control.

The US Government, along with other potential cloud-computing customers, has a strong interest
in the evolution of a vibrant and competitive cloud-computing marketplace. Prospective
customers, however, legitimately seek answers to three important questions:

1. If a customer wishes to move their workload away from a cloud provider, can that be
done at low cost and disruption? I.e., does the cloud provide portability?

2. Can a customer concurrently employ multiple cloud providers to achieve a single goal at
low cost? I.e., does the cloud provide interoperability?

3. What support for security can cloud providers offer to allay concerns about how customer
data is protected from unauthorized disclosure or modification; and what kinds of
availability requirements can cloud providers satisfy? I.e., does the cloud provide support
for security?

Generating high-quality cloud computing standards is one way to help to answer these questions,
but standards development is time-consuming. In the absence of existing standards, there is a risk
that short-term industry decisions affecting these questions, if not carefully considered in the
short term, may become legacy constraints.

The Standards Acceleration to Jumpstart Adoption of Cloud Computing (SAJACC) project at the
National Institute of Standards and Technology (NIST) seeks to generate concrete data about how
different kinds of cloud system interfaces can support portability, interoperability, and security.
By showing worked examples, the SAJACC project seeks to facilitate Standards Development
Organizations in their efforts to develop high-quality standards that address these important needs.

The operation of SAJACC is conceptually simple. SAJACC will iteratively:

1. Develop a set of cloud system use cases that express selected portability, interoperability,
and security concerns that cloud users may have;

2. Select a small set of existing cloud system interfaces that can be used for testing
purposes;

3. Develop a test driver, for each use case and selected system interface, that represents (to
the extent possible) the operation of the use case on the selected system interface;

NIST SAJACC Working Group Page 7 February 12, 2013

4. Run the test drivers and document the extent each test driver can run on each selected
system interface, and document any portability, interoperability, or security implications
of the test run; and

5. Publish all use cases, test codes, and test results on the openly-accessible NIST Cloud
Portal (www.nist.gov/itl/cloud), for use by Standards Development Organizations and
other interested parties.

Figure 1 depicts the NIST Cloud Portal (currently in the form of a community TWiki web site)
and the main steps of starting the SAJACC process. At this time of this writing, SAJACC has
completed several iterations of steps 1-3, and exploratory activities conducted in a community
setting for the process described in step 4 of the figure, resulting in output that has been
documented in the NIST Cloud Standards TWiki. The working group has thus demonstrated but
has NOT yet carried out the complete program of cloud standards validation described in this
figure.

The rest of this document describes the work done by the SAJACC working group so far, which
has resulted in a set of preliminary use cases developed for the first pass through the SAJACC
process and a set of initial demonstration validation evaluations. Through a series of open
workshops, and through public comment and feedback, NIST will continue to refine these use
cases and add new use cases as appropriate.

2. Terminology and Structure of the SAJACC Use Cases
Use cases are a well-known tool for expressing requirements at a high level. In this document we
briefly and informally describe a set of use cases for cloud systems. We use the following
informal definition of a use case.

Use Case: a description of how groups of users and their resources may interact with one or more
cloud computing systems to achieve specific goals. This document adapts the informal use case
template from [Cockburn]

The following sections present informal descriptions that focus on: actors and goals, success
scenarios, failure conditions, and failure handling (Cockburn’s terminology).

Figure 1	

NIST SAJACC Working Group Page 8 February 12, 2013

2.1 Important Actors for Public Clouds
Table 1 lists the actors that show up in the use cases. Importantly, the actors are disjoint and do
not (currently) inherit from one another. We adopt the definition of “actor” given by [Cockburn]
to be, essentially, anything with “behavior” such as a person or a program.

In our uses cases, we list the actors that participate. In some cases, an “entity” transforms itself
from one kind of actor to another by, for example, authenticating itself (becoming an
authenticated user). In this situation, the use case lists all the actors that appear at any point in

Actor Name Description

unidentified-user An entity in the Internet (human or script) that interacts with a cloud over the
network and that has not been authenticated.

cloud-subscriber A person or organization that has been authenticated to a cloud and maintains
a business relationship with a cloud.

cloud-subscriber-user A user of a cloud-subscriber organization who will be consuming the cloud
service provided by the cloud-provider as an end user. For example, an
organization's email user who is using a SaaS email service the organization
subscribes to would be a cloud-subscriber's user.

cloud-subscriber-
administrator

An administrator type of user of a cloud-subscriber organization that performs
(cloud) system related administration tasks for the cloud-subscriber
organization.

cloud-user A person who is authenticated to a cloud-provider but does not have a
financial relationship with the cloud-provider.

payment-broker A financial institution that can charge a cloud-subscriber for cloud services,
either by checking or credit card.

cloud-provider An organization providing network services and charging cloud-subscribers.
A (public) cloud-provider provides services over the Internet.

transport-agent A business organization that provides physical transport of storage media
such as high-capacity hard drives.

legal-representative A court, government investigator, or police.

identity-provider An entity that is responsible for establishing and maintaining the digital
identity associated with a person, organization, or (in some cases) a software
program. [NSTIC]

attribute-authority An entity that is responsible for creating and managing attributes (e.g., age,
height) about digital identities, and for asserting facts about attribute values
regarding an identity in response to requests. [NSTIC]

cloud-management-
broker

A service providing cloud management capabilities over and above those of
the cloud-provider and/or across multiple cloud-providers. Service may be
implemented as a commercial service apart from any cloud-provider, as
cross-provider capabilities supplied by a cloud-provider or as cloud-
subscriber-implemented management capabilities or tools

Table 1: Actors

NIST SAJACC Working Group Page 9 February 12, 2013

time, and the scenarios of the use case document the points in which actor transitions occur.

Note: We are aware that there are some conflicts between this list of actors defined here and the
taxonomy given in NIST Special Publication 500-293, US Government Cloud Computing
Technology Roadmap, Release 1.0 (Draft), Volume II Useful Information for Cloud Adopters,
which defines five major actors: cloud consumer, cloud provider, cloud carrier, cloud auditor, and
cloud broker. These differences are not important for the purposes of the use case scenarios
described in this current report, for which the definitions used in Table 1 have been used on a
consistent basis. A later section of this report addresses suggested work to bring the SAJACC use
case definitions, actors and scenarios into a closer match to the terminology used in the NIST
published reports.

The following sections organize the use cases by whether they are about the general management,
the interoperability between clouds, and by security issues. We believe that the use cases
presented in sections 3, 4, and 5 are likely candidates for testing in the SAJACC project. The use
cases presented in section 6, “Future Use Case Candidates” will be considered after the earlier use
cases have been implemented. Additional discussion on the organization of these use cases with
respect to output of other NIST Cloud Computing working groups is given in Section 8.

Figure 2: SAJACC Use Case Organization	

NIST SAJACC Working Group Page 10 February 12, 2013

2.2 General Organization of the SAJACC Use Cases
Figure 2 provides an overall depiction of the SAJACC Use Case scenarios organized as a mind
map. As noted above, this organization developed from early work in preparation of the
SAJACC use cases. To avoid confusion, the numbering system for these use cases was kept
consistent during the meeting series that followed. This procedure allowed reference to the use
case scenarios numerically during the evaluation of the validation process for tests and
demonstrations conducted against these scenarios.

3. Cloud Management Use Cases
The following use cases have been prepared to address scenarios related to cloud management
operations. At the present time, they represent a substantial sampling of typical cloud
management use cases, but do not yet comprise a complete or comprehensive set. Work is
ongoing within the SAJACC group to identify a structure that can provide a more comprehensive
set of operations based on community input, existing standards and cloud product application
programmer interface (API) capabilities, the NIST Cloud Computing Reference Architecture and
existing best practices for cloud management.

3.1 Open An Account
Actors: unidentified-user, cloud-subscriber, payment-broker, cloud-provider.

Goals: Cloud-provider opens a new account for an unidentified-user who then becomes a
cloud-subscriber.

Assumptions: A cloud-provider ’s account creation web page describes the service offered and
the payment mechanisms. An unidentified-user can access the cloud-provider ’s account
creation web page.

Success Scenario: (open, IaaS, PaaS, SaaS): An unidentified-user accesses a cloud-
provider ’s account creation web page. The unidentified-user provides: (1) a unique name for
the new account; (2) information about the unidentified-user ’s financial information; and (3)
when the unidentified-user wants the account opened. The cloud-provider verifies the
unidentified-user ’s financial information; if the information is deemed valid by cloud-provider,
the unidentified-user becomes a cloud-subscriber and the cloud-provider returns
authentication information that the cloud-subscriber can subsequently use to access the service.

Failure Conditions: (1) the unidentified-user does not provide a suitable name; (2) the financial
information is not valid; (3) cloud-provider fails to notify the cloud-subscriber the account is
open.

Failure Handling: For (1) and (2), new account is not created; For (3) See Use Case 3.2 below
on failure handling related to notifications from cloud-provider to cloud-subscriber.

Requirements File: None.

Credit: TBD

NIST SAJACC Working Group Page 11 February 12, 2013

3.2 Close An Account
Actors: unidentified-user, cloud-subscriber, cloud-provider, payment-broker.

Goals: Close an existing account for a cloud-subscriber.

Assumptions: A cloud-subscriber accesses a cloud-provider’s account management web page
to receive information about closing an account. Account closure requires the date and time that
the account should be closed as well as the method for disposition of data (returning data to
cloud-subscriber and deletion of data from cloud-provider’s system). We assume one account
per cloud-subscriber.

Success Scenario (close, IaaS, PaaS, SaaS): The cloud-subscriber interacts with the cloud-
provider’s account management web page and requests that their account be closed on a
particular date and time. The cloud-subscriber optionally requests the return of data stored with
the cloud-provider to the cloud-subscriber (See Use Case “Copy Data Objects Out of a Cloud”)
or a transfer of data to a different cloud-provider (See Use Case “Copy Data Objects between
Cloud Providers). In addition, the cloud-subscriber optionally specifies the data erase procedure
to be performed by the cloud-provider after any copy operations have been performed (See Use
case “Erase Data Objects in a Cloud”). The cloud-provider:(1) performs the requested actions on
the timetable requested; (2) charges the cloud-subscriber according to the terms of the service;
(3) notifies the cloud-subscriber that the account has been closed within an agreed to amount of
time after the account closes; (4) deletes the cloud-subscriber’s payment-broker information
from the cloud-provider’s systems; and (5) revokes the cloud-subscriber’s authentication
information. Now the cloud-subscriber is classified as an unidentified-user.

Failure Conditions: (1) the cloud-provider closes the account too early or after the requested
time and date; (2) an unauthorized user accesses a cloud-provider’s account management web
page and impersonates the real cloud-subscriber and closes the account; (3) the requested
disposition of data is not faithfully executed; (4) the cloud-provider does not completely delete
the cloud-subscriber’s payment-broker information; (5) the cloud-provider overcharges the
cloud-subscriber; (6) cloud-provider fails to notify the cloud-subscriber the account is closed;
(7) cloud-provider fails to revoke the cloud-subscriber’s authentication information.

Failure Handling: For (1) the cloud-subscriber will need to contact the cloud-provider to
reinstate the account if it was closed too early and, if too late, the cloud-provider may
inadvertently give away free service; For (2) the cloud-subscriber will need to contact the cloud-
provider and the cloud-provider will need to reinstate the account; For (3) only the cloud-
provider will know unless a data leak is discovered by the cloud-subscriber. If that happens,
cloud-subscriber must confront the cloud-provider. (See Use Case “Erase Data Objects In a
Cloud”); For (4), only the cloud-provider will know unless the cloud-subscriber continues to be
billed. If that happens, cloud-subscriber must confront cloud-provider. (See Use Case “Erase
Data Objects In a Cloud”); For (5), cloud-subscriber must confront cloud-provider; For (6)
cloud-subscriber should contact cloud-provider if time window for notification is exceeded;
For (7) cloud-provider retries its revocation procedure.

Note: We might want to consider non-repudiation for some important cloud-provider messages;
e.g., when an account gets closed, perhaps the cloud-provider should send a time-stamped and

NIST SAJACC Working Group Page 12 February 12, 2013

signed message to the former cloud-subscriber that asserts the means that were used to ensure
that the cloud-subscriber’s data were completely removed (e.g., merely-unlinked, zero-writing
memory/disk, n-pass overwrite). An efficient market would price these various erasure methods
very differently. While such messages would not enforce erasure methods and could easily be
faked, they would be hard evidence about the cloud-provider’s intended behavior and could
serve as a basis for third party audits.

Requirements File:

Credit: TBD

3.3 Terminate An Account
Actors: unidentified-user, cloud-subscriber, cloud-provider.

Goals: Cloud-provider terminates a cloud-subscriber’s account.

Assumptions: A cloud-provider determines that a cloud-subscriber’s account should be
terminated per the terms of the SLA. The issue of multiple accounts for a cloud-subscriber is not
considered part of the scope of this use case, nor is the issue of retaining sufficient information to
recognize an abusive cloud-subscriber trying to create a new account to continue the abuse.

Success Scenarios: (terminate, IaaS, PaaS, SaaS): Possible reasons for termination may be that
the cloud-subscriber has violated acceptable usage guidelines (e.g., by storing illegal content,
conducting cyber attacks, or misusing software licenses), or that the cloud-subscriber is no
longer paying for service. The cloud-provider sends a notice to the cloud-subscriber explaining
the termination event and any actions the cloud-subscriber may take to avoid it (e.g., paying
overdue bills, deleting offending content) or to gracefully recover data. Optionally, the cloud-
provider may freeze the cloud-subscriber’s account pending resolution of the issues prompting
the termination.

If the cloud-subscriber can pay for disposition of data currently stored in the cloud-provider’s
system, and performing the requested disposition actions is legal, the cloud-provider performs
the requested actions, charges the cloud-subscriber according to the terms of the service, notifies
the cloud-subscriber that the account has been terminated, deletes the cloud-subscriber’s
payment information from the cloud-provider’s system, and revokes the cloud-subscriber’s
identity credentials. At this point, the cloud-subscriber becomes an unidentified-user.

Failure Conditions and Handling: If a cloud-subscriber prevents the termination by correcting
the reason for termination (e.g., paying a late bill), then that could be seen as a failure of the use
case in the sense that the termination does not occur.

Credit: Various cloud-provider SLAs and customer agreements

3.4 Copy Data Objects Into A Cloud
Actors: cloud-subscriber, cloud-provider, transport-agent.

Goals: Cloud-subscriber initiates a copy of data objects from the cloud-subscriber’s system to
a cloud-provider’s system. Optionally, protect transferred objects from disclosure.

NIST SAJACC Working Group Page 13 February 12, 2013

Assumptions: Assumes the Use Case “Open an Account” for cloud-subscriber on cloud-
provider’s system. The cloud-subscriber has modify access to a named data object container on
the cloud-provider’s system.

Success Scenario 1 (cloud-subscriber-to-network copy, IaaS, PaaS, SaaS): The cloud-
subscriber determines a local file for copying to the cloud-provider’s system. The cloud-
subscriber issues a command to the cloud-provider’s system to copy the object to a container on
the cloud-provider’s system. The command may perform both the object creation and the data
transfer, or the data transfer may be performed with subsequent commands. The command
specifies the location of the local file, the data encoding of the local file, and the name of the new
object within the container. If the cloud-subscriber requests protection from disclosure,
cryptography is used to protect the objects in transit. The command returns the success status of
the operation from the cloud-provider’s system to the cloud-subscriber. The cloud-provider
charges the cloud-subscriber for the transfer according to the terms of the SLA, and begins
accruing storage charges.

Failure Conditions 1: (1) partial writes and concurrent accesses; (2) size limitations, i.e., the
local file will not fit into the container; (3) network fails repeatedly during transfer; (4) security
breaches resulting in stolen data are discovered by cloud-provider; (5) data loss during transfer;
(6) data errors during transfer; (7) cloud-provider’s system fails to notify the cloud-subscriber
the successful data object transfer to container.

Failure Handling 1: For (1), (3), (5), (6), cloud-subscriber retries request; For (4) cloud-
provider sends a notice of unauthorized disclosure to the cloud-subscriber; For (2), cloud-
subscriber contacts cloud-provider for larger container; For (7), See Use Case “Close Account”
on failure handling related to notifications from cloud-provider to cloud-subscriber.

Additional Assumptions: Data in transit is protected by one of two methods: 1) the cloud-
subscriber encrypts data prior to copying it onto the disk drive and also informs the cloud-
provider of the decryption key via a secure connection and the cloud-provider then decrypts the
data before copying it into a new object, 2) the cloud-subscriber encrypts the data prior to
copying it onto the disk drive and then, later, performs the decryption using processing resources
of the cloud. The cloud-provider will provide disk drives to cloud-subscriber or will accept
cloud-subscriber-provided disk drives.

Success Scenario 2 (cloud-subscriber-to-transport-agent copy, IaaS, PaaS, SaaS): The cloud-
subscriber prepares a local file for copying to the cloud-provider’s system. The cloud-
subscriber accesses the cloud-provider’s documentation and determines the characteristics of
disk drives that the cloud-provider accepts for data import. The cloud-subscriber uses a cloud-
provider-compatible disk and connects the disk drive to the cloud-subscriber’s computer system
and performs a local copy of the local file onto the disk drive, along with a manifest specifying
the encoding of the file, the container in which the file should be placed at the cloud-provider,
access control metadata about the file, and the file’s intended name. The cloud-subscriber uses a
transport-agent to deliver the disk drive to the cloud-provider. On receipt of the disk drive, the
cloud-provider connects the disk drive to the cloud-provider’s system and performs a local
copy of the data into the container specified by the cloud-subscriber, and either retains or returns
the disk drive according how the drive was provisioned. If the drive is to be re-used by the cloud-

NIST SAJACC Working Group Page 14 February 12, 2013

provider, the cloud-provider erases all cloud-subscriber data on the disk using a suitable
mechanism (see Use Case: “Erase Data Objects In a Cloud”), sends an attestation to the cloud-
subscriber that the erase operations have been performed, and charges the cloud-subscriber if
they requested special erase operations.

Failure Conditions 2: (1) cloud-subscriber sends inappropriate disk that fails to satisfy the
requirements of the cloud-provider; (2) data object is in format not supported by cloud-
provider; (3) transport-agent loses disk

Failure Handling 2: For (1) cloud-provider returns disk to cloud-subscriber; For (2) cloud-
provider returns disk to cloud-subscriber and sends message to cloud-subscriber requesting
data is resent in proper file encoding format; (3) transport-agent notifies cloud-subscriber of
loss.

Requirements File:

Credit: This scenario is inspired by the Amazon S3 system.

3.5 Copy Data Objects Out of a Cloud
Actors: unidentified-user, cloud-subscriber, cloud-provider, transport-agent.

Goals: Cloud-subscriber initiates a copy of data objects from a cloud-provider’s system to a
cloud-subscriber’s system. Optionally, protect transferred objects from disclosure.

Assumptions: The cloud-subscriber has “read” access to the objects and “traverse” access to
object containers.

Success Scenario 1 (network-to-cloud-subscriber copy, IaaS, PaaS, SaaS): A cloud-
subscriber prepares a local directory to receive a new file obtained from the cloud-provider’s
system. The cloud-subscriber issues a command to the cloud-provider’s system to retrieve an
existing object. The object resides in a container that itself resides on the cloud-provider’s
system, and the cloud-subscriber has “read” (or equivalent) access to the file as well as “traverse”
(or equivalent) access to the container (and any containing containers). The cloud-provider
authenticates the cloud-subscriber’s identity using credentials (e.g., by verifying a signature
generated using a private key held by the cloud-subscriber) that have been previously
established, e.g., at account setup. The command specifies the unique identifier of the object to be
copied, the location on the cloud-subscriber’s system that will receive the object (which is called
a file on the user’s system), and the data encoding of the object (e.g., ASCII, GIF, ZIP). Either as
part of the command or via a separate command, the cloud-provider generates a checksum value
that can be used later to check that object contents were not altered in transit. Optionally, the
command specifies that the object’s content should be protected from disclosure during transit.
The command returns the success status of the operation after the object has been copied. The
cloud-provider charges the cloud-subscriber that owns the object for the data transferred
according to the terms of service. Optionally, the cloud-provider charges the cloud-subscriber
that made the request (if different from the owning cloud-subscriber).

NIST SAJACC Working Group Page 15 February 12, 2013

Failure Conditions 1: (1) the object is corrupted in transit, or only part of it is received; (2) the
object is disclosed in transit even though disclosure protection was requested; (3) the object is
made inaccessible (e.g., moved, or “read” access removed by the object’s owner) before the copy
operation can begin (race condition).

Failure Handling 1: For (1), the cloud-subscriber retries the operation; For (2), the cloud-
provider sends the cloud-subscriber a notice of unauthorized disclosure; For (3), the cloud-
subscriber could retry the operation if the object has moved, but must contact the object’s owner
if access has been revoked.

Success Scenario 2 (network-to-unidentified-user copy, IaaS, PaaS, SaaS): An unidentified-
user prepares a local directory to receive a new file obtained from the cloud-provider’s system.
The unidentified-user issues a command to the cloud-provider’s system to retrieve an existing
object. The object resides in a container that itself resides on the cloud-provider’s system, and
the unidentified-user has “read” (or equivalent) access to the file as well as “traverse” (or
equivalent) access to the container (and any containing containers). The cloud-provider
determines that the command originated from an unauthenticated entity (i.e., an unidentified-
user). The unidentified-user will have the access rights that the cloud-provider offers to all
unidentified-users. The command specifies the unique identifier of the object to be copied, the
location on the unidentified-user’s system that will receive the object (which is called a file on
the unidentified-user’s system), and the data encoding of the object (e.g., ASCII, GIF, ZIP).
Either as part of the command or via a separate command, the cloud-provider generates a
checksum value that can be used later to check that object contents were not altered in transit. The
command returns the success status of the operation after the object has been copied. The cloud-
provider charges the cloud-subscriber that owns the object for the data transferred according to
the terms of service.

Failure Conditions 2: (1) the object is corrupted in transit, or only part of it is received; (2) the
object is made inaccessible (e.g., moved, or “read” access removed by the object’s owner) before
the copy operation can begin (race condition).

Failure Handling 2: For (1), the unidentified-user retries the operation; For (2), the
unidentified-user could retry the operation if the object has moved, but must contact the object’s
owner if access has been revoked.

Success Scenario 3 (physical-to-cloud-subscriber, IaaS, PaaS, SaaS): A cloud-subscriber
accesses the cloud-provider’s documentation and determines the characteristics of disk drives
that the cloud-provider accepts for data export. The cloud-provider may provide disk drives to
cloud-subscribers or may accept cloud-subscriber-provided disk drives. The cloud-subscriber
obtains a cloud-provider-compatible disk. The cloud-subscriber writes a manifest onto the disk
drive that specifies the location of the objects in the cloud to be copied onto the disk drive, and
whether the objects should be encrypted prior to shipping to protect their confidentiality. If the
cloud-provider is providing the disk drive, this information may be sent over the network instead.
If the cloud-subscriber is providing the disk drive, the cloud-subscriber uses a transport-agent
to deliver the disk drive to the cloud provider. Once the cloud-provider has the disk drive either
by receipt from the transport-agent or by procurement, the cloud-provider connects the disk to
the cloud system, computes checksums on the data objects to be transferred, optionally encrypts

NIST SAJACC Working Group Page 16 February 12, 2013

data objects to be transferred, performs a local copy of the specified data objects onto the disk
drive, and uses a transport-agent to send the disk drive to the cloud-subscriber. The cloud-
provider conveys the checksums and key material for decrypting the contents using a different
channel that is itself protected using the cloud-subscriber’s credentials (e.g., a public key known
to the cloud-provider). The cloud-subscriber takes steps to safeguard the key materials from
loss (e.g., backup on stable storage). On receipt of the disk drive, the cloud-subscriber connects
the disk drive to the cloud-subscriber’s computer system and performs a local copy of the data
objects to the cloud-subscriber’s computer system. If encryption was requested, the cloud-
subscriber decrypts the objects using the key material indicated by the cloud-provider. The
cloud-subscriber validates checksums on the objects. Depending on the provisioning of the disk
drive, the cloud-subscriber may return it to the cloud-provider.

Failure Conditions 3: (1) a cloud-subscriber-provided disk is lost before arriving at the cloud-
provider or is defective; (2) the disk is lost or damaged in transit from the cloud-provider to the
cloud-subscriber; (3) data objects on the disk received by the cloud-subscriber are corrupted;
(4) the key material and/or checksum information is lost before it can be received by the cloud-
subscriber.

Failure Handling 3: For (1) and (2), procure a new disk and retry. For (3) and (4), retry.

Requirements File: NA

Credit: The idea of charging the owning cloud-subscriber or the requesting cloud-subscriber is
from Amazon. The idea of using a disk for bulk transfer is inspired by Amazon.

3.6 Erase Data Objects In a Cloud
Actors: unidentified-user, cloud-subscriber, cloud-provider.

Goals: Erase a data object on behalf of a cloud-subscriber or unidentified-user.

Assumptions: One or more data objects already exist in a cloud-provider’s system. A request to
erase a data object includes the unique identifiers of the objects to delete, date and time when the
deletion should occur, and the means that the cloud-provider should employ to perform the
deletion operation (e.g., simply returning the space for use by others, zero-filling the object prior
to return, n-pass overwriting of the object with random data). There is no redundant data storage
by cloud-provider or redundant copies are deleted together.

Success Scenario 1 (erase, IaaS, PaaS, SaaS): A cloud-subscriber (or unidentified-user if
they have been granted access to a container/object) sends a delete-objects request to the cloud-
provider’s system. At the requested deletion time, the cloud-provider disables all new attempts
to access the object. The cloud-provider continues to perform in-process data transfers for the
object. When all current data transfers have completed or timed out, the cloud-provider performs
the requested deletion operation on the media that stored the object, charges the cloud-subscriber
for the service, and then sends back to the cloud-subscriber a time-stamped, signed message
attesting to the steps that have been taken to delete the object within an agreed to period of time
after deletion.

Failure Conditions: (1) the object is moved or renamed before the deletion operation is
attempted (race condition); (2) cloud-provider erases an incorrect data object; (3) an

NIST SAJACC Working Group Page 17 February 12, 2013

unauthorized user accesses a cloud-provider’s account management web page and impersonates
the real cloud-subscriber and requests the data deletion which then occurs; (4) access to the
object is disabled before date and time requested by cloud-subscriber; (5) cloud-provider fails
to notify the cloud-subscriber that the object is erased; (6) erasure of the object is not performed
completely or at all by cloud-provider.

Failure Handling: For (1) the cloud-provider should receive an error message from the
attempted erasure and should retry; For (2) the cloud-subscriber should notify the cloud-
provider and the cloud-provider should undo deletion on wrong data and perform deletion on
the correct data object; For (3) the cloud-subscriber should notify the cloud-provider and the
cloud-provider should undo the deletion; For (4) the cloud-subscriber must contact the cloud-
provider to undo erasure; For (5) the cloud-subscriber must query the cloud-provider to ask if
the deletion did occur – if not, the cloud-provider must retry the delete operation immediately;
For (6) the cloud-subscriber must contact the cloud-provider and the cloud-provider must
delete immediately or reattempt deletion.

Requirements File:

Credit: TBD

3.7 VM Control: Allocate VM Instance
Actors: cloud-subscriber, cloud-provider

Goals: The cloud-subscriber should have the capability to create VM images that meet its
functions, performance and security requirements and launch them as VM instances to meets its
IT support needs.

Assumption: The cloud-subscriber has an account with an IaaS cloud service that enables
creation of Virtual Machine (VM) images and launching of new VM instances. The cloud-
provider shall offer the following capabilities for VM Image creation to the cloud-subscriber:

1) A set of pre-defined VM images that meets a range of requirements (O/S version, CPU cores,
memory, and security)

2) Tools to modify an existing VM image to meet cloud-subscriber’s requirements

3) Tools to create a new VM image from scratch

The cloud-provider shall support the following capabilities with respect to launching of a VM
instance:

1) Secure launching of a VM instance (e.g., enabling creation of an asymmetric cryptographic
key pair)

2) Secure administration of the cloud-subscriber’s VM instance through the ability to:

4. configure certain ports (e.g., opening of port 22 for enabling a SSH session;

5. allow cloud-subscriber’s scanning tools on the launched VMs for presence of
appropriate patches (based on Guest O/S) or absence of malware

3) Cloud-subscriber shall be able to suspend and re-start VM instances

NIST SAJACC Working Group Page 18 February 12, 2013

Success Scenario: (AllocateVM, IaaS): (1) The cloud-subscriber requests a specific pre-
defined Virtual Machine image supplied by the cloud-provider (O/S, CPU cores, memory, and
security) and launches new VM instances. (2) The cloud-subscriber is able to modify a VM
image according to their requirements using cloud-provider’s tools. (3) The cloud-subscriber
has secure launching and administration of their VM instance.

Failure Condition: (1) The cloud-subscriber is not able to successfully complete a request to
create a Virtual Machine from cloud-provider’s inventory; (2) The cloud-subscriber is not able
to modify or create a Virtual Machine image according to their specifications with the cloud-
provider’s toolset; (3) The cloud-subscriber is not able to invoke their required security
protections on their VM image/VM instance.

Failure Handling: (1) The cloud-provider must verify that the request made by the cloud-
subscriber is valid and then take corrective steps to assist the cloud-subscriber or take necessary
action to provide the VM configuration; (2) The cloud-provider must verify correct usage of
their toolset, assist the cloud-subscriber or allow the cloud-subscriber to use their own
methodology for VM creation; (3) On receipt of a security error message, the cloud-subscriber
retries the operations; on multiple failures, the cloud-subscriber contacts the cloud-provider for
resolution of the failure.

Credit: Original use case derived from features of Amazon Web Services; we also note the
applicability of OpenNebula, OpenStack, CloudStack and other cloud framework products.

3.8 VM Control: Manage Virtual Machine Instance State
Actors: cloud-subscriber, cloud-provider

Goals: A cloud-subscriber stops, terminates, reboots, starts or otherwise manages the state of a
virtual instance

Assumptions: A suitable VM image (operating system executables and configuration data) exists.
Possible formats include OVF.

Success Scenario 1 (start-stop-non-persistent-VMs, IaaS): A cloud-subscriber identifies a
VM image to run. The cloud-subscriber chooses a number of VMs and issues a command to
load the VM image into the chosen number of VMs and execute. The cloud-provider provisions
VMs and performs the loading and boot-up cycle for the selected image for the requesting cloud-
subscriber and initializes each VM with the cloud-subscriber’s credentials (so the cloud-
subscriber can log in). The provisioning includes the allocation of an IP address. The boot device
(root file system) for each VM is non-persistent. The cloud-subscriber may issue commands that
connect persistent media as non-root file systems or non-file system devices for each of the VMs,
operate the VMs to read or store data onto those devices, and then stop the VMs. Upon a VM’s
exit, the contents of the boot device are lost but data written to other devices during the run is
preserved. The IP address for the VM is disassociated when the VM is stopped. The cloud-
provider charges the cloud-subscriber for cpu time, storage time, network usage, and possibly
for system startup cycles.

NIST SAJACC Working Group Page 19 February 12, 2013

Failure Conditions: (1) The VM image may fail to boot correctly; (2) VMs may fail to stop on
command. (Note that many network-level failures could be enumerated like, e.g., fails-to-obtain-
a-valid-IP-address.)

Failure Handling: For (1), the cloud-subscriber can choose a different VM image, or debug; for
(2) the cloud-subscriber can request the cloud-provider to terminate the stalled VMs.

Success Scenario 2 (start-stop-persistent-VMs, IaaS): A cloud-subscriber identifies a VM
image to run. The cloud-subscriber chooses a number N of VMs and issues a command to load
the image onto a persistent media (most likely a form of network-attached storage). The cloud-
subscriber issues a command to boot N VMs from the persistent media, using the cloud-
subscriber’s credentials for each (so the cloud-subscriber can log in). The cloud-provider
provisions N VMs, associates the persistent network storage with each as a boot device and
initiates the boot sequence. The boot device is persistent and the data contents survive VM
shutdowns. The cloud-subscriber may issue commands that connect additional persistent media
as non-root file systems or non-file system devices for each VM, operate the VMs to read or store
data onto those devices, and then stop the VMs. Upon a VM’s exit, the contents of all persistent
devices are preserved. The IP address for the VM is disassociated when the VM is stopped. The
VMs can be restarted on command. The cloud-provider charges the cloud-subscriber for cpu
time, storage time, network usage, and possibly for system startup cycles. The VMs can be
restarted.

Failure Conditions 2: (1) The VM image may fail to boot correctly; (2) the intended persistent
boot device may fail; (3) VMs may fail to stop on command. (Note that many network-level
failures could be enumerated like, e.g., fails-to-obtain-a-valid-IP-address.)

Failure Handling 2: For (1), the cloud-subscriber can choose a different VM image, or debug;
for (2) the cloud-subscriber can retry or consult with the cloud-provider; for (3) the cloud-
subscriber can request the cloud-provider to terminate the stalled VMs.

Requirements File: NA

Credit: Original use case derived from features of Amazon Web Services; we also note the
applicability of OpenNebula, OpenStack, CloudStack and other cloud framework products.

3.9 Query Cloud-Provider Capabilities and Capacities
Actors: cloud-user, cloud-provider

Goals: A cloud-user makes a structured capability or capacity or price request to one or several
cloud-providers and receives a structured response that can be used as input to drive service
decisions.

Assumptions: An extensible industry request/response interface for cloud-provider capability
and capacity characteristics. The capability request format will include a minimum set of named
capabilities that all implementers of the standard can respond to affirmatively or negatively. Each
named capability has related specific metric parameters, for example size, speed and number of
cores for an instance specification, compliance or noncompliance for a Trusted Internet
Connection (TIC) specification, or block or REST interface for a storage specification. Capability
responses might include cloud-provider-specific identifiers for the returned capability to assist in

NIST SAJACC Working Group Page 20 February 12, 2013

subsequent capacity queries or provisioning requests. Queries on capabilities beyond the
minimum agreed set are permitted, and return an “unrecognized-capabilities” response. The
capacity request format and interface is dependent upon capability definition, with parameters
such as capability of interest, and metric desired. Examples include availability of a quantity of
instance capabilities of a given size, guaranteed response time, and available storage volume for a
specified storage type. Capacity responses contain a pricing response with a time window of
availability for the pricing so that cloud-users can make procurement decisions. Capacity
responses do not guarantee that actual availability will continue beyond the moment of query.

Success Scenario 1 (Capability Request: IaaS, PaaS, SaaS): A cloud-user wishes to determine
whether cloud-provider-1 can support a named cloud capability, for example the ability to run
instances of a specified size and speed, the ability to support queuing, or the ability to supply a
particular named class of storage. The cloud-user marshals a capability request using an industry-
standard format, and transmits the request to cloud-provider-1 using an industry-standard
request/response method and cloud-provider-1’s authentication credentials. Cloud-provider-1
receives the capabilities request, evaluates it against its capabilities data and returns a structured
response to the cloud-user specifying the extent to which the desired capability is available from
cloud-provider-1. Responses can be affirmative, negative, or “near miss” responses containing
structured variance data to assist in fallback decisions. The cloud-user evaluates the response,
either through an automated program or human review, and makes an allocation decision or
subsequent capacity requests for cloud-provider-1. A capability request can be repeated across
multiple cloud-providers to compare capabilities at a point in time to drive service acquisition or
allocation decisions.

Failure Conditions 1: (1) Network, authentication or interface difficulties cause the request to
fail; (2) Cloud-provider-1 request processing fails; (3) Cloud-provider-1 is unable to recognize
the named cloud capability because it is outside the minimum required capabilities.

Failure Handling 1: (1) The cloud-user observes request failure and consequent error messages
and retries in the case of a transient error or remedies problem; (2) The cloud-user observes
request failure and retries in the case of a transient error or contacts cloud-provider-1; (3)
Cloud-provider-1 returns a specific “unrecognized capability” response indicating that the
requested capability is not a recognized capability for cloud-provider-1.

Success Scenario 2 (Capacity Request: IaaS, PaaS, SaaS): A cloud-user wishes to ascertain
whether cloud-provider-1 has adequate capacity to provide a named capability and the current
cost of the capacity/capability pair. The cloud-user marshals a capacity request using an industry-
standard format and transmits the request to cloud-provider-1 using an industry-standard
request/response method and cloud-provider-1 authentication credentials. Cloud-provider-1
receives the capacity request, evaluates it against their current runtime availability data and spot
pricing information, and returns a structured response to the cloud-user specifying the extent to
which the desired capacity is available from cloud-provider-1, the current cost at which it is
available to the requesting cloud-user, and the time window within which the capacity is
available at the specified cost. Note that the time window guarantees pricing only; actual
availability is not guaranteed beyond the moment of request. The cloud-user evaluates the
response, either through an automated program or human review, and makes an allocation
decision for cloud-provider-1. A capacity request can be repeated across multiple cloud-

NIST SAJACC Working Group Page 21 February 12, 2013

providers to compare capabilities at a point in time to drive service acquisition or allocation
decisions. Often a capacity request will follow a previous capability request/response invocation
and contain the cloud-provider-1 specific identifier for the affirmatively-queried capability as a
parameter.

Failure Conditions 2: Include all Scenario 1: capabilities failure conditions with respect to
capacities.

Failure Handling 2: Include all Scenario 1: capabilities failure handling with respect to
capacities.

Success Scenario 3 (Set Request, IaaS, PaaS, SaaS): A cloud-user wishes to determine if all or
part of a set of capabilities or capacities are available from cloud-provider-1. For example, the
cloud-user might request capacity for a set consisting of 20 VM’s of specified capability, 500GB
of block storage, 100 GB/month network bandwidth and TIC compliance. The cloud-user
marshals and sends cloud-provider-1 a capacity or capability request as discussed in previous
scenarios, using an extended syntax that permits assembly of multiple capabilities or capacities
into a single request. Cloud-provider-1 evaluates the capacity or capability request’s components
and returns a structured response for the set which contains an overall capability or capacity
response for the set containing per cent coverage of components, along with information on each
component in the set. The cloud-user receives the response and evaluates set coverage
information to make an allocation or procurement decision.

Failure Conditions 3: (1) Include all Scenario 1: capabilities failure conditions with respect to
capacities; (2) Elements of capability or capacity set are not recognized by cloud-provider-1
because they fall outside the minimum required capabilities; (3) Processing failure on cloud-
provider-1 fails to return a valid result for one of capability or capacity set.

Failure Handling 3: (1) Include all Scenario 1: capabilities failure handling with respect to
capacities; (2) Elements of capability or capacity set falling outside minimum required
capabilities deliver an “unrecognized capability” response within the set, and are treated as “not-
implemented” by the overall response; (3) Elements of capability or capacity set failing to process
deliver an error response within the set and are treated as “not-implemented” by the overall
response.

Requirements File: NA

Credit: NA

4. Cloud Interoperability Use Cases
The following use cases have been prepared to address scenarios related to cloud interoperability.
At the present time, they represent a substantial sampling of typical cloud ineroperability use
cases, focusing specifically on transfer of data and virtual machine contents between clouds, but
do not yet comprise a complete or comprehensive set. Work is ongoing within the SAJACC
group to identify a structure that can provide a more comprehensive set of interoperability
features based on community input, existing standards and cloud product application programmer
interface (API) capabilities, the NIST Cloud Computing Reference Architecture and existing best

NIST SAJACC Working Group Page 22 February 12, 2013

practices for cloud interoperability. It should be noted here that cloud brokerage and cloud
federation are specific areas in which standards and the capabilities of cloud products that are
specifically oriented to these areas will have strong applicability.

4.1 Copy Data Objects between Cloud-Providers
Actors: cloud-subscriber, cloud-provider-1, cloud-provider-2, transport-agent

Goals: Copy data objects from a cloud-provider-1’s system to a cloud-provider-2’s system on
the initiative of a cloud-subscriber.

Assumptions: Cloud-subscriber has established an account with cloud-provider-1 and cloud-
provider-2.

Success Scenario (copy, IaaS): A cloud-subscriber mutually authenticates to cloud-provider-1
(where the data object initially resides) using cloud-provider-1’s mutual authentication
mechanisms, and starts a command shell (or equivalent) on cloud-provider-1. From cloud-
provider-1, the cloud-subscriber may access other systems on the Internet. The cloud-
subscriber determines the object identifiers of the data objects that the cloud-subscriber wishes
to copy from cloud-provider-1 to cloud-provider-2. From the command shell on cloud-
provider-1 the cloud-subscriber authenticates to cloud-provider-2 using cloud-provider-2’s
authentication mechanisms (note: this approach passes authentication through cloud-provider-1).
The cloud-subscriber locates a container (e.g., a directory) on cloud-provider-2 where the
copied object will reside. The cloud-subscriber may have to create a container. For each data
object that the cloud-subscriber wishes to copy, the cloud-subscriber: 1) downloads the
contents of the object to the virtual machine the cloud-subscriber is using in cloud-provider-1
2) uploads the data as a new object in cloud-provider-2’s object store, and 3) deletes the copy of
the data just created in the virtual machine in cloud-provider-1. The copy of the data just created
in virtual machine in cloud-provider-1 is deleted as described in Use Case 3.6 (Erase Data
Objects in Clouds).

Failure Conditions: (1) The cloud-subscriber is unable to authenticate to cloud provider-1; (2)
the cloud-subscriber has insufficient privileges for the requested actions.

Failure Handling: The cloud-providers notify the subscriber of the failure and provide a
description of the failure (e.g. expired certificate, insufficient privileges, etc.).

Credit: TBD

Note: Success Scenario 3 or New Use Case – Version Control: further work is needed to explore
topics related to the idea of several versions of same data object copied across multiple clouds
and version control, and the related importance of distributed revision control systems.

4.2 Dynamic Dispatch to an IaaS Cloud
Actors: cloud-subscriber, cloud-provider-1, cloud-provider-2, … cloud-provider-n

Goals: Invoke operations on the most effective clouds available based on a client-side set of rules
that are evaluated at runtime.

Assumptions: The cloud-subscriber has already established accounts with multiple IaaS cloud-
providers.

NIST SAJACC Working Group Page 23 February 12, 2013

Success Scenario (dispatch, IaaS): This use case is for workloads that do not depend on unique
resources of a specific cloud-provider. The cloud-subscriber wishes to perform a job on the
cloud that can offer the best performance, with the greatest reliability, at the least cost. From the
time when the cloud-subscriber opened the account with each cloud-provider, the cloud-
subscriber has a record of each cloud-provider’s service charges and promised performance and
availability. Optionally, the cloud-subscriber queries each cloud-provider for any updates to the
SLA regarding these issues and, if there are changes, evaluates the acceptability of the changes as
in “Compare Service Level Agreements to Respond to a Change”. Then the cloud-subscriber
formulates a small test workload, which could have processing aspects, data storage aspects, or
network performance aspects. The cloud-subscriber runs the test workload one or more times on
each cloud-provider, and sorts the cloud-providers by availability, correctness of the
workload’s outputs, and performance. Alternatively, the cloud-subscriber queries the cloud-
providers for performance, usage, availability, and cost metrics, and dispatches workloads
accordingly. In this case, the cloud-provider bears the responsibility to maintain the needed
querying interface.

Failure Conditions: (1) The cloud-provider is unable to provide the quality-of-service required
for the dispatched workload; (2) the cloud-provider cannot scale to meet the cloud subscriber’s
demand; (3) cloud-provider is unable to provide meaningful metrics. .

Failure Handling: Cloud-subscriber dispatches workload to another cloud-provider.

Credit: This use case was inspired by the libcloud project [LIBCLOUD], which provides a
client-side library for interacting with multiple IaaS cloud-providers concurrently using a single
API. Other related concepts have been presented by the CompatibleOne open-source cloud
brokerage project.

4.3 Cloud Burst From Data Center to Cloud
Actors: cloud-subscriber, cloud-provider, cloud-management-broker

Goals: Maintain required service levels for an agency’s data-center hosted process, by
dynamically allocating/de-allocating cloud computer or storage resources to service current
demands.

Assumptions: Assumes the Use case “Open an Account”

Success Scenario 1 (base, IaaS): Cloud-subscriber provisions and maintains cloud-provider-1
virtual machine images and/or configured storage capacity designed to support cloud-subscriber-
defined units of work ranging in scope from individual computing or storage tasks to entire
distributed applications. Cloud-subscriber establishes load monitoring processes for the units of
work concerned, and load threshold and sensitivity limits for cloud bursting. Upper limits govern
starting new processes on cloud-provider to handle increasing load; lower limits govern stopping
cloud-provider processes to handle decreasing load. As monitored load triggers threshold limits,
processes start or stop on cloud-provider-1 infrastructure to maintain required service levels.

Failure Conditions 1 (base): Failed allocation or de-allocation event

Failure Handling 1 (base): Failed allocation or de-allocation event: Cloud-provider-1 notifies
cloud-subscriber. Cloud-subscriber either communicates with cloud-provider-1 for resolution

NIST SAJACC Working Group Page 24 February 12, 2013

within an acceptable SLA or has access to automated cloud-provider-1 notification and
resolution. Failed de-allocation events can result in excess agency charges and must be covered in
SLA agreements.

Success Scenario 2 (Manual Bursting, IaaS): Cloud-subscriber manually allocates and de-
allocates cloud-provider resources based on threshold notifications.

Failure Conditions 2 (Manual Bursting): N/A

Failure Handling 2 (Manual Bursting): N/A

Success Scenario 3 (Automated Bursting, IaaS): Cloud-management-broker processes
monitor load and threshold limits and allocate or de-allocate cloud-provider-1 resources using
programming interfaces provided by cloud-provider.

Failure Conditions 3 (Automated Bursting): Failed event detection

Failure Handling 3 (Automated Bursting): Cloud-management-broker independently
monitors its event detection services and notifies cloud-subscriber of outages so cloud-
subscriber can fall back to manual bursting scenarios.

Credit: N/A

4.4 Migrate a Queuing-Based Application
Actors: cloud-subscriber, cloud-provider-1, cloud-provider-2, cloud-management-broker

Goals: Migrate an existing queue and associated messages from one cloud-provider to another

Assumptions: cloud-subscriber is responsible for modifying applications accessing queues to
access new queue after migration.

Success Scenario (IaaS): A cloud-subscriber wishes to migrate a cloud-provider-1 queue and
its associated current messages to cloud-provider-2. Both cloud-provider-1 and cloud-
provider-2 implement an agreed minimum set of message attributes, queue attributes and queue
operations to facilitate migration activities. Cloud-subscriber issues a command to cloud-
management-broker to migrate queue X on cloud-provider-1 to queue Y on cloud-provider-2.
Cloud-management-broker issues commands using native API to cloud-provider-2 to create
queue Y. Cloud-management-broker issues commands using native API to cloud-provider-1
to stop queue X processing in order to create a steady state. Cloud-management-broker issues
commands to cloud-provider-1 to access messages in queue X and commands to cloud-
provider-2 to create identical objects on queue Y using agreed minimum attribute set. Cloud-
provider issues a start command to Queue Y and notifies cloud-subscriber.

Failure Conditions: (1) Cloud-provider is unable queuing operations; (2) cloud-provider
cannot provide sufficient information in a timely manner about the status of queues.

Failure Handling: The cloud-provider notifies the cloud-subscriber of the failure and provides
a description of the failure.

Credit: This use case inspired by Amazon’s simple queuing service: http://aws.amazon.com/sqs.
Several other cloud products contain similar concepts.

NIST SAJACC Working Group Page 25 February 12, 2013

4.5 Migrate (fully-stopped) VMs from one cloud-provider to another
Actors: cloud-subscriber, cloud-provider-1, cloud-provider-2, cloud-management-broker

Goals: Seamlessly migrate an arbitrarily designated stopped virtual machine from cloud-
provider-1 to cloud-provider-2.

Assumptions: Includes the Use cases “Open An Account”, “VM Control: Manage Virtual
Machine Instance State”, “VM Control: Allocate VM Instance”. Both cloud-providers are using
para-virtualized devices, or are using identical hardware.

Success Scenario (migrate instance, IaaS): The cloud-subscriber issues commands to halt the
source VM instance on cloud-provider-1.

Cloud-provider-1 generates a configuration file for the halted VM. The configuration file
includes an abstract description of the virtual hardware provided by cloud-provider-1 as well as
a description of the storage devices needed for the VM to operate. Candidate fields for the
configuration file include:

• The number of virtual CPUs

• The amount of memory used/assumed by the VM

• The unique hostname and IP address

• The Domain Name System resolver configuration used by the VM

• The list of virtual network interfaces used/assumed by the VM

• The subnet mask and identifier for each subnet attached to the VM

• The MAC address assigned to the VM

• The list of virtual block devices the VM assumes

• The list of attached storage devices (local or network-accessed file systems)

• The configuration file may take advantage of the OVF format or the Mirage Image
Format, or others.

The cloud-subscriber submits the configuration file to cloud-provider-2 and requests a
translation into cloud-provider-2’s environment. Cloud-provider-2 returns a list of the fields in
the configuration file that have reliable translations in cloud-provider-2’s environment. The
cloud-subscriber identifies any missing translations in the configuration file. If the cloud-
subscriber cannot supply missing translations, the migration is cancelled.

Otherwise, the cloud-subscriber substitutes cloud-provider-2’s translations in the configuration
file, and, if the VM’s root storage device is persistent, copies the data object representing the
VM’s root storage device to cloud-provider-2 (See Use Case “Copy Data Objects Between
Clouds”). If non-root storage devices are network accessible from outside of cloud-provider-1’s
infrastructure, the cloud-subscriber may choose to leave the data at cloud-provider-1 and access
them remotely; however access latencies may limit the availability of this approach. If non-root
storage devices are not network accessible, or if the cloud-subscriber determines that the
performance of remote access storage devices would not be sufficient, the cloud-subscriber

NIST SAJACC Working Group Page 26 February 12, 2013

copies the data objects containing the attached devices from cloud-provider-1 to cloud-
provider-2. (Note that this can be a large operation and the cloud-subscriber may choose to
reconfigure the VM to avoid some of the copying.)

The cloud-subscriber issues VM management commands for cloud-subscriber-2 to initialize a
new VM in cloud-subscriber-2 that is based on the information transferred from cloud-
provider-1 (See Use case “VM Control: Allocate VM Instances”). The new VM can now be
managed at cloud-provider-1 (See Use case “VM Control: Manage Virtual Machine Instance
State”).

Failure Conditions (migrate instance): Necessary translations in the VM’s configuration file
are missing for cloud-provider-2.

Failure Handling (migrate instance): There is no recovery except to choose a different cloud-
provider as cloud-provider-2.

Credit: Success Scenario 2: Amazon AMI images. DMTF, “Open Virtualization Format
Specification”; DMTF, DSP-IS0103_1.0.0: "Use Cases and Interactions for Managing Clouds",
June 2010; “Opening Black Boxes: Using Semantic Information to Combat Virtual Machine
Image Sprawl”, D. Reimer et al, VEE ’08 March 5-7, 2008, Seattle, Washington.

5. Cloud Security Use Cases
The area of cloud security is of particularly intense interest and importance. As a result, a large
amount of associated work has been carried out by the NIST Cloud Computing Security Working
Group, most of which has been completed after the preparation of the following SAJACC use
case scenarios. The use cases presented below were designed to initiate discussion on making the
connections that are needed between general security design considerations and testable use case
scenarios that are formulated in the same way as other work presented here.

A later section of this report makes connections between the output of the NIST Security and
other working groups and the continuation of the SAJACC validation process.

5.1 Identity Management - User Account Provisioning
Actors: cloud-subscriber, cloud-subscriber-administrator, cloud-provider

Goals: The cloud-subscriber requires to provision (create) user accounts for cloud-subscriber-
users to access the cloud. Optimally, the cloud-subscriber requires the synchronization of
enterprise system-wide user accounts from enterprise data center-based infrastructure to the cloud,
as part of the necessary process to streamline and enforce identical enterprise security (i.e.,
authentication and access control policies) on cloud-subscriber-users accessing the cloud.

Assumption: The cloud-subscriber has well defined policies and capabilities for identity and
access management for its enterprise IT applications and data objects. The cloud-subscriber has
enterprise infrastructure to support the export of cloud-subscriber-user account identity and
credential data. The cloud-provider has identity provider (IdP) capabilities and has provided an
interface (Web browser-based user interface or an API set) to accept the cloud-subscriber’s

NIST SAJACC Working Group Page 27 February 12, 2013

input and/or upload of cloud-subscriber-user identity data for account provisioning. The cloud-
subscriber can establish trusted connections to these cloud services.

Success Scenario 1 (IaaS): This scenario illustrates how a cloud-subscriber can provision
user/administrator accounts (mainly IT administrators, e.g., billing manager, system administrator,
network engineer, etc.) on the IaaS cloud.

Steps: The cloud-subscriber-administrator gathers user identity and credential information
(could be an extract or export from the enterprise's identity management store) and the account
provisioning policies, including user privilege settings, such as user group/role assignment
information. Optionally, the cloud-subscriber-administrator transforms and formats the
provisioning data into the format required by the cloud-provider. The cloud-subscriber-
administrator uses an identity management tool provided by the cloud-provider, through a Web
browser-based user interface, a command line tool, or a set of identity management APIs, to
input/upload the account provisioning data for the cloud-subscriber. Optionally, the cloud-
subscriber-administrator uses the cloud-provider's interface (Web browser-based, command
line, or APIs) to configure access control policies of the new user accounts provisioned, ensuring
enterprise dictated access policies are in place in the cloud and can be leveraged by the
authentication and access control mechanism deployed in the cloud.

Success Scenario 2 (PaaS, SaaS): This scenario illustrates how a cloud-subscriber can
provision end user accounts in the cloud, often in bulk fashion. The user identity and credential
data are often readily available from the enterprise's identity management store.

Steps: The cloud-subscriber-administrator gathers user identity and credential information
(often an extract or export from the enterprise's identity management store) and the security
policies data, including user privilege settings, such as user group/role assignment information.
Optionally, the cloud-subscriber-administrator transforms and formats the identity data into a
standard-compliant format, such as SPML. The cloud-subscriber-administrator uses an identity
management tool provided by the cloud-provider, through a Web browser-based user interface, a
command line tool, or a set of identity management APIs, to upload the bulk account
provisioning data for the cloud-subscriber-users. The cloud-provider's identity management
capabilities are now configured with the cloud-subscriber-user account data and the cloud-
subscriber's access control policy is now in place to be enforced.

Failure Condition/Failure Handling: TBD (User identity meta-data information from the
enterprise doesn't meet cloud-provider's requirements, etc.)

Credit: Cloud Security Alliance's Guidance for Identity and Access Management, V2.1; Amazon
AWS Identity and Access Management (IAM) tools and documentation.

5.2 Identity Management - User Authentication in the Cloud
Actors: cloud-subscriber, cloud-subscriber-user, cloud-provider, identity-provider
(optional)

Goals: The cloud-subscriber-users should be able to authenticate themselves using a standard-
based protocol, such as SAML, OpenID or Kerberos, to gain access to the cloud
application/service. Alternatively, the cloud-subscriber-user should be able to transparently log

NIST SAJACC Working Group Page 28 February 12, 2013

in to the cloud application/service once they are authenticated against any system that’s part of
single-sign-on federation of systems.

Assumption: The cloud-subscriber-user's account has been already provisioned in the cloud,
see use case Identity Management – User Account Provisioning. In the case of single-sign-on,
prior trust relationships have been established (e.g., using trusted crypto keys) among the identity
provider/authentication service and the cloud applications/services that are sharing the federated
identity attributes of authenticated users.

Success Scenario 1 (PaaS, SaaS): This scenario illustrates how a cloud-subscriber-user can
authenticate against a cloud-based authentication service using the appropriate credentials to gain
access to the cloud-based applications/services.

Steps: The cloud-subscriber-user provides his/her credentials (e.g., using password tokens or
smart card) to the cloud-provider’s authentication service interface. The authentication request
gets validated by the authentication service and an appropriate authentication token is issued
using a standard-based protocol (such as a SAML authentication assertion). The cloud-
subscriber-user then accesses cloud-deployed applications/services using the authentication
token until the authenticated session expires or the user explicitly logs out using the
authentication service’ logout interface.

Success Scenario 2 (PaaS, SaaS, Single-Sign-On): This scenario illustrates how a cloud-
subscriber-user authenticates against an authentication service (identity provider deployed either
in the cloud or within the enterprise’s IT infrastructure) and transparently gains access to cloud
applications/services without presenting authentication credentials again, achieving single-sign-
on.

Steps: The cloud-subscriber-user authenticates against the enterprise’s authentication
service/identity provider, obtains an authentication token (such as a digitally signed SAML
authentication assertion); the cloud-subscriber-user accesses (through Web browser)
applications/services deployed in the cloud with the authentication token; the authentication sub
system provided by the cloud-provider transparently trusts the authentication token and obtains
the federated identity attributes for access control decisions.

Failure Condition/Failure Handling: trust relationship among cloud-provider’s services and the
identity provider is not established;

Credit: Cloud Security Alliance's Guidance for Identity and Access Management, V2.1

5.3 Identity Management - Data Access Authorization Policy
Management in the Cloud
Actors: cloud-subscriber, cloud-subscriber-user, cloud-subscriber-administrator, cloud-
provider, identity-provider (optional)

Goals: A cloud-subscriber-administrator should be able to manage (add/delete/change) data
access authorization policies for data stored in the cloud. Note: this capability is essential to fulfill
the use case of Sharing of access to data in a cloud.

NIST SAJACC Working Group Page 29 February 12, 2013

Assumption: The cloud-subscriber-user account has been already provisioned in the cloud, see
use case Identity Management – User Account Provisioning. The cloud-provider has data
access authorization mechanisms in place to use the authorization policies managed by the cloud-
subscriber-administrator.

Success Scenario (IaaS, PaaS): Steps: The cloud-subscriber-administrator authenticates and
logs on to the cloud-provider’s data access authorization policy tool (such as a command line
tool to manage access to file system data objects in the cloud, or a Web interface to manage
authorization policies to access data in a database). The cloud-subscriber-administrator
executes commands or performs actions to create/change data access policies, e.g., change the
ACL of a file system object. Optionally, the cloud-subscriber-administrator uploads prepared
access authorization policies (such as encoded in XACML format) to the cloud-provider’s bulk
policy management interface. Immediately following the update, the affected cloud-subscriber-
user will be able to access a data object or be denied access to a data object depending upon the
new policy.

Failure Condition/Failure Handling:

Credit:

5.4 Identity Management - User Credential Synchronization Between
Enterprises and the Cloud
Actors: cloud-subscriber, cloud-subscriber-administrator, cloud-provider

Goals: The cloud-subscriber requires changes to user credentials in the enterprise’s identity
provider system to be automatically communicated to the corresponding infrastructure in the
cloud-provider’s system to ensure the integrity of access and conformance to enterprise policies
are maintained in near real time. This is an extension and optimization of the use case for User
Account Provisioning.

Assumption: The cloud-subscriber has well defined policies and capabilities for identity and
access management for its enterprise IT applications and data objects. The cloud-subscriber has
enterprise infrastructure to support the export of user account identity and credential data. The
cloud-provider has identity provider capabilities and has provided an interface (Web browser-
based user interface or an API set) to accept cloud-subscriber’s input and/or upload of cloud-
subscriber-user identity data for account synchronization. The cloud-provider’s identity
provider capabilities have been setup to communicate securely with the cloud-provider’s identity
management interface (APIs).

Success Scenario (IaaS): Steps: The cloud-subscriber-administrator creates/schedules a
repeatable job to monitor changes to the enterprise’s identity provider store, and configures the
policies to synchronize the changes to the cloud-provider’s identity management interface
(APIs). The scheduled job monitors changes in user identity and credential data, and bulk
processes updates to the cloud-provider’s identity management sub-system in near real time,
thus keeping the identity and credential data in-sync.

NIST SAJACC Working Group Page 30 February 12, 2013

Failure Condition/Failure Handling: The cloud-subscriber-user accesses the cloud
application/service/data in-between of the credential synchronization and breaks integrity of
access and conformance to enterprise policy.

Credit:

5.5 eDiscovery
Actors: cloud-subscriber, cloud-provider, legal-representative, transport-agent

Goals: To maintain data objects and their metadata, which are stored and processed in a cloud, so
that the data provenance can be known, and to provide data to an authorized legal-representative
on request. The cloud-provider must be able to collect a snapshot of data about the cloud-
subscriber.

Assumptions: The legal-representative has obtained authority from a court to have the cloud-
provider locate and preserve information of interest.

Success Scenario (ediscovery, IaaS): An authorized legal-representative formally requests that
a cloud-provider disclose information stored on behalf of a cloud-subscriber. The cloud-
provider maintains logs that allow the cloud-provider to indicate the provenance of data in the
cloud-provider’s infrastructure that belongs to a specific cloud-subscriber. In response to the
request, the cloud-provider creates a snapshot of the relevant data stored on behalf of the
specified cloud-subscriber, including data regarding active virtual machines or other processing
elements that the cloud-subscriber uses or if available, has used. The cloud-provider conveys
the requested data to the legal-representative by an appropriate means (e.g., by transport-agent
if the data is large). The legal-representative may be required to compensate the cloud-provider
for the costs of providing the service.

Failure Condition: The cloud-provider fails to execute the request at all or in part.

Failure Handling: The legal-representative must confront the cloud-provider via the court
system for resolution.

Credit: SNIA has a brief description in its draft use cases [SNIA].

5.6 Security Monitoring
Actors: cloud-subscriber, cloud-provider

Goals: Conduct ongoing automated monitoring of the cloud-provider infrastructure to
demonstrate compliance with cloud-subscriber security policies and auditing requirements.

Assumption: The cloud-subscriber has well defined policies and auditing requirements for its
IT infrastructure. Security Content Automation Protocol (SCAP) validated security tools are
deployed within the infrastructure to perform monitoring and compliance reporting. The cloud-
subscriber policies and auditing requirements are expressed in a standard format suitable for
automatic processing. The Cloud-subscriber may require cloud-providers to demonstrate
compliance to multiple regulations (e.g., HIPAA, PCI, SOX, FISMA, etc.). The degree of
monitoring incumbent upon the cloud-provider may vary based on the cloud computing service
model in use and the SLA. The regulatory controls required by a client may be derived from a
security control framework such as NIST 800-53, ISO/IEC 27002, or the Cloud Security Control

NIST SAJACC Working Group Page 31 February 12, 2013

Matrix from the Cloud Security Alliance (being moved into ISO/IEC 27000) to enable a standard
control set to compare and monitor security in cloud environments.

Success Scenario 1 (Express Policy and Check Mechanisms, IaaS): Cloud-subscriber
attempts to convey security monitoring requirements to the cloud-provider using standard
formats (e.g., SCAP). These requirements are expressed as machine-readable policy documents
that describe the required configuration settings, vulnerability and malware detection components,
and system patch state. The cloud-provider acknowledges successful receipt of the policy
content.

Failure Conditions 1: TBD

Failure Handling 1: TBD

Success Scenario 2 (Assess Cloud Environment, IaaS): Cloud-provider continuously
monitors cloud components under their purview and demonstrates compliance to the designated
policy through the presentation of standardized assessment results to the cloud-subscriber. If the
cloud-provider fails to deliver evidence of compliance within the timeout period, the cloud-
subscriber may consider an alternate provider or attempt to resubmit the request. Allocation of
workload to a cloud-provider is contingent upon the ability of the provider to satisfy the cloud-
subscriber security requirements on an ongoing basis. The failure of a cloud-provider to
maintain compliance may trigger the migration of the workload to an alternate provider.

Failure Conditions 2: The requested action or process performed at one or more of the N cloud-
providers fails, is non-responsive, or returns incorrect or incomplete results to the cloud-
subscriber.

Failure Handling 2: Cloud-subscriber can reinitiate the requested action, attempt to mediate
discrepancy with the cloud-provider, or consider performing the action with an alternative
cloud-provider.

Credit: TBD

Actors: Cloud-provider, Cloud-subscriber, Country-CERT

Goals: Conduct security monitoring to detect, handle and coordinate incident response between
Cloud-subscribers and Cloud-providers, between Cloud-providers, and between country-level
CERTs (Country-CERT).

Assumptions: Security Content Automation Protocol (SCAP) validated security tools are
deployed within the infrastructure to perform monitoring and compliance reporting as well as to
detect incidents. Once an incident is detected, the Incident Object Description and Exchange
Format (IODEF) [RFC5070] is used to provide a standard format for the incident investigation
over the lifecycle of that incident. Real-time Inter-network Defense (RID) [RFC6045] is used to
communicate the incident information in an IODEF format between entities.

Success Scenario 1: A Cloud-provider detects a possible incident via information provided by
the use of SCAP in the cloud environment that was able to determine a threat may have been
realized (Vulnerability is known via CVE, OVAL results show the configuration would allow for
the exploit to be successful, event logs indicate an attempt was made to exploit the vulnerability).
The Cloud-provider takes the known information about the incident and formats it into IODEF.

NIST SAJACC Working Group Page 32 February 12, 2013

The Cloud-provider investigates the incident and determines that further research is needed, then
sends the IODEF document encapsulated in the RID wrapper to another Cloud-provider (or
Country-CERT) for further investigation. The second Cloud-provider finds the source of the
incident and mitigates the traffic. The second Cloud-provider communicates the result back to
the first Cloud-provider. The first Cloud-provider may then send a report using RID to the
affected client including all of the actions taken to resolve the issue. The first Cloud-provider
may also send a report using RID to the Country-CERT to raise awareness about this attack type.

Failure Conditions 1:

Failure Handling 1:

5.7 Sharing of access to data in a cloud
Actors: cloud-subscriber, unidentified-user, cloud-provider

Goals: A cloud-subscriber makes access to objects stored in a cloud-provider selectively
available to other cloud-subscribers and unidentified-users.

Assumptions: The cloud-provider provides an Access Control List (ACL) for each data object
and for each data object container. An ACL contains a set of ACL entries, each of which lists a
set of permitted access modes (e.g., read, write, delete, append, truncate, traverse) and the
identities of a set of cloud-subscribers to which the modes apply. The unidentified-user is a
pseudo-cloud-subscriber for which access rights are specified. The ACL for a new object-or-
container is initialized with a default value that a cloud-subscriber can set. A cloud-subscriber
has administrative access to the ACLs of a set of data objects.

Success Scenario (change-ACL, IaaS, PaaS): A cloud-subscriber who owns objects sends a
request to a cloud-provider to change the ACL for one or more of those objects. The request
specifies the object identifier for each object’s access modes that should be affected. The change
may be the addition or deletion or edit of an existing ACL entry. After the request has been
processed, object access requests from the specified cloud-subscribers and unidentified-users
will be checked in accordance with the new ACL by the cloud-provider.

Failure Conditions: (1) a cloud-subscriber or unidentified-user attempts to modify the ACL
(in order to give others access to an object) although the cloud-subscriber or unidentified-user
does not active permission to do so.

Failure Handling: For (1), the data object’s owner with the correct permissions will need to
make the ACL modification request to the cloud-provider.

Requirements File: NA

Credit: ACLs have been included in many systems and specifications, including POSIX.1e.

6. Future Use Cases Candidates
The following use cases are described in enough detail to be included in this report, but have not
yet been placed into the above hierarchy and could be expanded to include several related use
case scenarios. In some of the use cases given below, separation into distinct sub-cases is implied

NIST SAJACC Working Group Page 33 February 12, 2013

but has not yet been realized. Incorporation of these use cases also implies and requires
additional use cases to be added in complementary sections, as noted below.

Further expansion and integration of the SAJACC use case listing into a more comprehensive
organization that takes into account the output of other NIST Cloud Computing groups is
discussed in a subsequent section.

6.1 Cloud Management Broker
Actors: cloud-subscriber, cloud-user, cloud-provider-1, …cloud-provider-n, cloud-
management-broker

Goals: Provide a cloud-user a unified and enhanced management interface to multiple cloud-
providers. The essential features of a cloud-management-broker are a unified interface,
federated cloud-subscriber credentials for multiple cloud-providers and federated access to
multiple cloud-provider programming interfaces.

Assumptions: Cloud-management-broker services can be delivered in many forms, including
as a standalone service, or a set of capabilities within a cloud-provider. In cases where a cloud-
provider business entity also functions as a cloud-management-broker, its cloud-
management-broker aspect is regarded as an entirely separate use case actor. Cloud-
management-broker services can be also executed by agency custom code. The modal case is
assumed to be a third-party service provider independent of and capable of addressing multiple
cloud-providers.

Success Scenario 1 (generic base, IaaS, PaaS, SaaS): A cloud-user wishes to carry out an
action on cloud-provider-1 using a federated interface, with no direct knowledge of cloud-
provider-1 commands or interfaces. A cloud-management-broker offers the cloud-user a
federated interface to multiple cloud-providers through a human user interface, an application
programming interface or both. The cloud-user selects desired cloud-provider-1 resources,
action and action parameters using the cloud-management-broker interface. The cloud-
management-broker collects and marshals the selected action and parameters from the cloud-
user’s selection and issues the desired command to cloud-provider-1 using cloud-provider-1
native interface.

Failure Conditions 1: (1) The cloud-user command fails at the cloud-management-broker
because of misconfiguration or incorrect cloud-management-broker operation; (2) The cloud-
user command fails at the target cloud-provider due to improper API call or incorrect cloud-
provider operation.

Failure Handling 1: Cloud-management-broker notifies cloud-user of event with diagnostic
information and offers retry opportunity. Cloud-management-broker notifies its own
operational staff and monitoring services to update its own and cloud-provider availability
information.

Note that the base scenario failure conditions and handling apply to all scenarios in this use
case.

Management Scenarios

NIST SAJACC Working Group Page 34 February 12, 2013

Success Scenario 2 (extended management case – Open An Account, IaaS, PaaS, SaaS): A
cloud-subscriber has opened an account with a cloud-provider-1 as detailed in the extended
management use case and now wishes to manage cloud-provider-1 using the cloud-
management-broker. The cloud-user registers the cloud-provider-1 account with the cloud-
management-broker programming or human interface, and provides sufficient cloud-provider-
1 credentials for the cloud-management-broker to address the cloud-provider-1 native
interface. The cloud-subscriber may optionally enter descriptive information, spending or other
usage limits and metrics to the cloud-management-broker to place management limitations on
cloud-provider-1 usage. The cloud-management-broker uses cloud-provider-1’s native
interface to validate account and credential information, notifies the cloud-subscriber and
includes cloud-provider-1 in its action and metrics interfaces.

Failure Conditions 2 (Base Plus): The cloud-provider-1 credentials provided by the cloud-user
are rejected by cloud-provider-1.

Failure Handling 2 (Base Plus): Cloud-management-broker notifies cloud-user of event with
diagnostic information and offers opportunity to retry or replace credentials.

Success Scenario 3 (manage-cloud-user, IaaS, PaaS, SaaS). A cloud-subscriber has registered
a cloud-provider-1 account with a cloud-management-broker and wishes to selectively grant
and manage their cloud-users access to cloud-provider-1 information, resources and operations.
The cloud-subscriber uses the cloud-management-broker interface to define cloud-users and
aggregate groupings of cloud-users with related resource utilization limits. The cloud-
subscriber uses the cloud–management-broker interface to selectively grant the appropriate
cloud-users access to specified cloud-provider-1 information, resources and operations by
means of a cloud-management-broker access control framework. The cloud-user authenticates
with the cloud-management-broker, accesses an interface presenting permitted information,
operations and resources for cloud-provider-1, and executes tasks within their scope of
permission. The cloud-management-broker tracks and reports on cloud-provider-1 resource
utilization for users and aggregates of users, effectively multiplexing the cloud-subscriber account
over multiple cloud-users.

Failure Conditions 3 (Base Plus): Cloud-management-broker is unable to access cloud-
provider-1 utilization information for a period of time.

Failure Handling 3 (Base Plus): Cloud-management-broker notifies cloud-user of event with
diagnostic information detailing the period of utilization information outage.

Success Scenario 4 (included management case – Close an Account, IaaS, PaaS, SaaS): A
cloud –subscriber has previously registered a cloud-provider-1 account with cloud-
management-broker as detailed in Success Scenario 2 (extended management case – “Open
An Account”) and now wishes to close the account with cloud-provider-1. The cloud-
subscriber uses the cloud-management-broker interface to issue cloud-provider-1 a close
account command. The cloud-management-broker accesses cloud-provider-1 using cloud-
subscriber credentials, marshals parameters from the cloud-subscriber, and issues cloud-
provider-1 commands implementing the management use case “Close An Account”. The cloud-
management-broker delivers cloud-subscriber all consequent cloud-provider-1 messages
including non-repudiation information.

NIST SAJACC Working Group Page 35 February 12, 2013

Failure Conditions 4 (Base Plus): Cloud-provider-1 does not offer an account close interface.

Failure Handling 4 (Base Plus): Cloud-management-broker does not make close account
command available to cloud-user.

Success Scenario 5 (included management case – Terminate an Account, IaaS, PaaS, SaaS):
A cloud–subscriber has previously registered a cloud-provider-1 account with cloud-
management-broker as detailed in Success Scenario 2 (extended management case – “Open
An Account”). Cloud-provider-1 now wishes to terminate an account as detailed in included
management Use case “Terminate an Account.” The cloud-management-broker regularly polls
all registered cloud-providers for status events, detects the account freeze or termination
notification per included management use case and conveys the notification to the cloud-
subscriber through the cloud-management-broker interface. The cloud-subscriber optionally
communicates directly with cloud-provider-1 to reinstate the terminated account if desired.

Failure Conditions 5 (Base Plus): The cloud-provider-1 freeze or notification is not provided
by cloud-provider-1 programming interface and is not seen by cloud-management-broker.

Failure Handling 5 (Base Plus): Cloud-subscriber receives cloud-provider-1 freeze or
termination notification directly from cloud-provider-1 and proceeds per included management
case.

Success Scenario 6 (included management cases – Copy Data Objects into a Cloud/Network ,
Copy Data Objects out of a Cloud/Network to Cloud User, Erase Data Objects In a Cloud,
IaaS): A cloud-user wishes to copy data objects into, out of, or erase objects on a cloud-
provider-1 cloud as detailed in the included management cases. The cloud-user accesses a
cloud-management-broker interface to view their cloud-provider-1 storage structures and
issues cloud-management-broker commands to copy data objects into cloud-provider-1, copy
out of cloud-provider-1 or erase objects from cloud-provider-1. The cloud-management-
broker uses cloud-provider-1’s native interface to issue commands to effect the operation
specified in the included use case and notifies cloud-user of the result. Note that the “copy”
management scenarios for unidentified users or transport-agent data transfer are not covered
by the cloud-management-broker, as unauthenticated access and physical transport are
inappropriate for brokerage.

Failure Conditions 6 (Base Plus): No conditions for scenario beyond base

Failure Handling 6 (Base Plus): TBD

Success Scenario 7 (included management cases VM Control: Allocate VM Instance, VM
Control: Manage Virtual Machine Instance, IaaS): A cloud-user wishes to allocate or manage
virtual machine instances as detailed in the included management cases. The cloud-user accesses
a cloud-management-broker interface to view cloud-provider-1 virtual machine images and
instances, and issues cloud-management-broker commands to allocate or manage selected
instances as specified in the included use case. The cloud-management-broker uses cloud-
provider-1’s native interface to issue commands to effect the operation specified in the included
use case and notifies cloud-user of the result.

Failure Conditions 7 (Base Plus): No conditions for scenario beyond base.

NIST SAJACC Working Group Page 36 February 12, 2013

Failure Handling 7 (Base Plus): TBD

Success Scenario 8 (included management case Monitor Infrastructure [DOES NOT EXIST
IN MANAGEMENT SECTION YET], IaaS): A cloud-user wishes to monitor and respond to
changes in infrastructure services provided by cloud-provider-1. Cloud-provider-1 is previously
registered by cloud-subscriber with the cloud-management-broker per Success Scenario 2
(extended management case – Open An Account). Cloud-user has sufficient permissions to set
thresholds, view reports and receive alerts per Success Scenario 3 (manage-cloud-user). The
cloud-management-broker assembles cloud-provider-1 performance and availability
information using native cloud-provider-1 interfaces, and aggregates the information in its
internal reporting and alerting framework. The cloud-user uses the cloud-management-broker’s
interface to set alerting thresholds on cloud-provider-1 infrastructure components, view reports
on cloud-provider-1 infrastructure component performance and availability, and receive alerts on
cloud-provider-1 infrastructure components when performance triggers the alerting thresholds.

Failure Conditions 8 (Base Plus): (1) Cloud-management-broker is unable to access cloud-
provider-1 monitoring information for a period of time; (2) Cloud-management-broker’s
internal monitoring processes are unavailable for a period of time

Failure Handling 8 (Base Plus): (1) The cloud-management-broker treats unavailable cloud-
provider-1 monitoring information as an alert and transmitted to cloud-users registered for alerts
on cloud-provider-1; (2) Unavailable cloud-management-broker monitoring services are
treated as an alert and transmitted to cloud-subscriber and cloud-users registered for alerts,
either through cloud-management-broker alerting system if functional, by email if alerting is
not functional, or after the fact if entire cloud-management-broker is inoperative.

Interoperability Scenarios

Success Scenario 9: (Migrate Data Objects Between Clouds, IaaS): A cloud-user wishes copy
or move a data object from cloud-provider-1 to cloud-provider-2. The cloud-user accesses a
cloud-management-broker interface to access both cloud-provider-1 and cloud-provider-2
data objects and containers in order to select source data objects from cloud-provider-1,
destination data objects from cloud-provider-2 and the desired mode of migration. The copy
mode leaves the source object intact after migration; the move operation provides transactional
erasure of the source object. For each selected cloud-provider-1 data object, the cloud-
management-broker uses cloud-provider-1’s native interface to issue commands to access the
object, and cloud-provider-2’s native interface to create a new object with identical content in
the location indicated in the copy or move command, verifies the integrity of the new object, and
notifies cloud-user of the result. In the move mode the cloud-management-broker then issues a
native cloud-provider-1 command to erase the source object.

Failure Conditions 9 (Base Plus): (1) A namespace collision between the desired destination
location on cloud-provider-2 and the specified destination identifier occurs; (2) One or several of
a series of copy or move operations fail but some succeed; (3) The transfer portion of a move
transaction succeeds, but the erasure portion fails.

Failure Handling 9 (Base Plus): (1) The cloud-management-broker detects the namespace
collision before initiating the copy operation and notifies the cloud-user with option to overwrite,

NIST SAJACC Working Group Page 37 February 12, 2013

skip or, in the case of a series of commands, skip all. (2) On first fail the cloud-management-
broker notifies the cloud-user of the failure and offers the option to retry, skip or abort. (3) On
failed erasure the cloud-management-broker notifies the cloud-user and offers the option to roll
back the transaction, which erases the destination object, or to retry.

Success Scenario 10: (included interoperability cases – Cloud Burst From Cloud to Cloud,
IaaS): A cloud-user configures rules with the cloud-management-broker governing how
service requests are allocated over a pool of registered providers, cloud-provider-1 thru cloud-
provider-n. The rules establish a precedence of providers, a way to query and respond to
reported provider load, and metrics to allocate load over providers in the pool. Cloud-user issues
a command to cloud-management-broker to perform a Virtual Machine operation per Success
Scenario 7 (included management cases VM Control), but without identifying a target cloud-
provider. Cloud-management-broker evaluates the command against allocation rules,
dynamically selects optimal cloud-provider(s) from the cloud-subscriber’s registered pool, and
apportions requests among the cloud-provider-1 to cloud-provider-n using native cloud-
provider interface to address each involved cloud-provider.

Failure Conditions 10 (Base Plus): (1) Cloud-management-broker unable to locate an
operating cloud-provider based on rules; (2) Command failure on individual cloud-provider.

Failure Handling 10 (Base Plus): (1) Cloud-management-broker notifies cloud-subscriber of
event with diagnostic information and offers retry opportunity; (2) Cloud-management-broker
accesses allocation rules to select fallback cloud-provider to replace failing provider, and
notifies cloud-subscriber. In cases where no fallback is available, cloud-management-broker
notifies subscriber.

Success Scenario 11: (included interoperability cases – Cloud Burst From Data Center to
Cloud, IaaS):

Additional Assumptions: Cloud-management-broker has mechanisms for registering and
monitoring Data Center load metrics as if the Data Center were a cloud provider. This can be
generically implemented with Data Center private cloud software or could be an additional
feature of the cloud-management-broker programming interface.

Extends Success Scenario 10: (Cloud Burst From Cloud to Cloud) by configuring rules to
designate agency Data Center as a member of the pool of cloud providers, and bursting to be
allocated over data center and cloud-provider-1 thru cloud-provider-n based on load and rule
priority settings.

Failure Conditions (Base Plus Scenario 10): Data center becomes unavailable to cloud-
management-broker interface

Failure Handling (Base Plus Scenario 10): The cloud-management-broker notifies the cloud-
subscriber of the unavailable data center as if it were an unavailable cloud-provider. See Failure
Handling (1) for Success Scenario 8 (Monitor Infrastructure)

Success Scenario 12 (included interoperability case Migrate a Queuing-Based Application,
IaaS):

NIST SAJACC Working Group Page 38 February 12, 2013

Additional Assumptions: An industry agreed minimum set of agreed attributes for queues and
messages, and minimum set of queue operations. Java message service (JMS) is an example of an
existing cross-implementation specification for queues, topics and messages.

A cloud-user wishes to migrate a queue and its current contents from cloud-provider-1 to cloud-
provider-2 as detailed in the included management case. The cloud-user views cloud-provider-
1 queues and messages using the cloud-management-broker interface, and issues the cloud-
management-broker commands to stop and then to migrate queues and messages to cloud-
provider-2 as specified in the included use case. The cloud-management-broker uses both
cloud-provider-1 and cloud provider 2’s native interface to issue commands to effect the
migration as detailed in the included use case, and notifies cloud-user of the result.

Failure Conditions (Base Plus): (1) Queue stop operation fails on cloud-provider-1; (2) Queue
creation and/or message transfer fails on cloud-provider-2

Failure Handling (Base Plus): (1) Cloud-management-broker aborts entire queue migration
and notifies cloud-user with error message; (2) Cloud-management-broker restarts queue on
cloud-provider-1, aborts queue migration and notifies cloud-user with error message.

Success Scenario 13 (included management case Migrate Fully-Stopped) VMs from one
provider to another, IaaS)

Additional Assumptions: Cloud-provider-1 supports and exposes an interface to prepare
instances and/or machine images for migration. Cloud-provider-2 supports and exposes an
interface to receive prepared instances and convert them to a native operating instance.

A cloud-user wishes to migrate a fully-stopped VM instance or machine image from cloud-
provider-1 to cloud-provider-2 as detailed in the included management case. The cloud-user
accesses a cloud-management-broker interface and views cloud-provider-1 instances and/or
machine images, then issues cloud-management-broker commands to stop and then to migrate
the selected instances or images as specified in the included use case. The cloud-management-
broker uses both cloud-provider-1 and cloud provider 2’s native interface to issue commands
to effect the migration, and notifies cloud-user of the result. The cloud-management-broker
may be responsible for transferring the prepared static representation of the cloud-provider-1
image to cloud-provider-2, but the mechanics of preparing the static representation and
subsequently translating it into cloud-provider-2 format are delegated to the respective cloud
provider interfaces per included use case.

Failure Conditions 13 (Base Plus): Cloud-management-broker unable to transfer prepared
static representation of cloud-provider-1 image to cloud-provider-2 because of internal or
communication failure.

Failure Handling 13 (Base Plus): Cloud-management-broker offers cloud-user opportunity to
retry or abort migration.

Extended Management Scenarios

Success Scenario 14 (Extend Infrastructure Instance Management Capabilities, IaaS): A
cloud-user wishes to perform virtual machine instance management tasks that are not supported
by one or all of cloud-provider-1 through cloud-provider-n. Tasks include installing

NIST SAJACC Working Group Page 39 February 12, 2013

applications or services, creating or managing users, starting and stopping instance services or
any other operation that can be performed on a running virtual machine instance but is not
supported by the cloud-provider’s native interface. The cloud-management-broker provides
the cloud-user a management agent to install in each cloud-provider-1-n instances, and an
interface to issue the cloud-management-broker extended commands. Cloud-user selects a task,
for example installing an application or creating a user, and a collection of instances to receive
the task. The cloud-management-broker communicates with each instance management agent
and issues commands to affect the task that is carried out on the target instances by the locally
running agent installed on each virtual machine instance for cloud-provider. The cloud-
management-broker interface represents the state of each command to the cloud-user.

Failure Conditions 14 (Base Plus): Cloud-management-broker agent fails to execute or
reports an error on target instance.

Failure Handling 14 (Base Plus): Cloud-management-broker notifies cloud-user with error
specifics or inability to contact. Transient errors can be retried.

Success Scenario 15 (Assemble and Manage Infrastructure Components as a Platform –
IaaS, PaaS): A cloud-user wishes to define, assemble and manage a collection of infrastructure
components as a coherent multi-tiered platform, including but not limited to virtual machine
instances or images, storage, load balancers, and databases. Using a cloud-management-broker
interface, the cloud-user selects cloud-provider instances or images and assembles them into
tiers, such as application tiers which implement an application layer, load balancing tiers which
implement load balancers, or database tiers which implement replicated or clustered databases.
The cloud-user accesses a cloud-management-broker interface and assembles the tiers into a
logical platform, specifying scaling metrics for each tier, connections between tiers, data load
processes and sources, backup processes and all required interdependencies. The cloud-user
starts the unified platform using the cloud-management-broker interface, views metrics on its
various components, receives alerts and alarms on failure or scaling events, views backups, and
stops components of the platform or platform as a whole. The cloud-management-broker uses
native interfaces to cloud-provider-1 thru n implementing the platform components, and issues
the native commands corresponding to cloud-user requests, monitors the cloud-provider
components, and issues scaling commands and alerts according to cloud-provider metrics.
Components within a platform assembly may initially be constrained to resources from a single
cloud-provider, but future cross-provider platform assembly and operation scenarios are possible.

Failure Conditions 15 (Base Plus): (1) Cloud-management-broker is unable to fully start or
stop the assembled platform because of a processing tier failure; (2) Processing failure within an
application tier renders tier inoperative or degraded.

Failure Handling 15 (Base Plus): (1) Cloud-management-broker notifies cloud-user with
error specifics from failing tier component. Transient errors can be retried; (2) Cloud-
management-broker detects failure of component or tier and restarts tier components according
to tier scaling rules.

Credit: RightScale, Enstratus, CompatibleOne.

NIST SAJACC Working Group Page 40 February 12, 2013

6.2 Transfer of ownership of data within a cloud
Actors: cloud-subscriber-1, cloud-subscriber-2, cloud-provider

Goals: Cloud-subscriber-1 transfers the ownership of some data objects from cloud-subscriber-
1 to cloud-subscriber-2 in a cloud-provider.

Assumptions: Cloud-subscriber-1 owns a set of data objects stored with a cloud-provider

Success Scenario (transfer of ownership, IaaS): Cloud-subscriber-1 sends a change-
ownership request to the cloud-provider. The change-ownership request identifies the objects to
be affected, the identity of the cloud-subscriber to receive the ownership of the objects (cloud-
subscriber-2), and the time the change should occur. Either cloud-subscriber-1 or the cloud-
provider sends a request to cloud-subscriber-2 offering the ownership. Cloud-subscriber-2
accepts or declines the offer. If cloud-subscriber-2 accepts the offer, immediately after the
specified time, the cloud-provider changes the ownership metadata for the specified objects and
fees associated these objects stop accruing to cloud-subscriber-1 and begin accruing to cloud-
subscriber-2.

Failure Conditions: (1) Cloud-subscriber-1 is not authorized to change ownership; (2) cloud-
subscriber-2 does not respond to the transfer of ownership request; (3) cloud-provider does not
have access to the data objects.

Failure Handling: Cloud-provider notifies cloud-subscriber-1 that the transfer of ownership
request has failed and provides description of why the transfer failed.

Requirements File: The change of ownership request, acceptance or rejection, is logged by the
cloud-provider. The change of ownership transaction is supported by cryptographic mechanisms
that allow for mutual authentication and non-repudiation.

Credit: TBD

6.3 Fault-Tolerant Cloud Group
Actors: cloud-subscriber, cloud-provider-1, cloud-provider-2, cloud-provider-n

Goals: Synthesize a highly reliable service using the facilities of multiple cloud-providers.

Assumptions: Assume that a cloud-subscriber has already opened accounts with N cloud-
providers (See Use case “Open An Account”). We also assume that when comparisons of data or
output results from the N cloud-providers are made, a majority of the data or results will be found
to be equivalent. Also, the metadata about data objects includes time stamps or sequence numbers.

Success Scenario 1 (write data, IaaS, PaaS): The cloud-subscriber attempts to copy a data
object onto all N of the cloud-providers using the data object APIs that each cloud-provider
publishes (See Use Case “Copy Data Objects Into A Cloud”). Each cloud-provider returns a
message indicating whether or not the copy operation succeeded. The cloud-subscriber records
the number of successes M. If M < N, the cloud-subscriber may re-issue the request or evaluate
whether or not the data has been stored with sufficient redundancy. If not, the cloud-subscriber
may optionally open accounts with new cloud-providers.

NIST SAJACC Working Group Page 41 February 12, 2013

Success Scenario 2 (read data, IaaS, PaaS): Assume the cloud-subscriber issues a number K
of concurrent object read requests using the data object APIs that each cloud-provider publishes.
The cloud-subscriber will choose K to be large enough so that at least one of the responses from
the responding cloud-providers will contain data from the object’s most recent update. The
cloud-subscriber compares responses from the responding cloud-providers, and chooses the
response representing the latest version of the object.

Success Scenario 3 (redundant batch jobs, IaaS, PaaS): The cloud-subscriber starts a
processing job on each of the N cloud-providers (e.g., See Use Case “VM Control: Manage
Virtual Machine Instances”). Each cloud-provider runs exactly the same job, on the same input
data, and produces output data. The cloud-subscriber retrieves the output data from the first-
completing cloud-provider, checksums it, and then checksums the output subsequently returning
cloud-providers, comparing each for equality. If any of the equality checks fail, the cloud-
subscriber can rerun the job, perhaps allocating it onto a different set of cloud-providers, or
simply take a majority vote and consider that the result.

Success Scenario 4 (state machine replication, IaaS, PaaS): The cloud-subscriber starts a
long-running server process in each of the N cloud-providers. Iteratively, the cloud-subscriber
sends a service request to each server process in the N cloud-providers, receives each server’s
results, and compares the results. If the comparisons do not show equality, the cloud-subscriber
re-initializes servers that are determined to have failed by perhaps migrating to new cloud-
providers. If a server has failed to respond to requests for a timeout period, the cloud-subscriber
reinitializes the server, bringing it up to the state of the others.

Failure Conditions: The requested action or process performed at one or more of the N cloud-
providers fails or produces incorrect returning data to cloud-subscriber.

Failure Handling: Cloud-subscriber either reinitiates the requested action, or considers
performing the action with new cloud-provider(s).

Requirements File: NA

Credit: Note: there is a lot of literature on how to implement replication in network services
using protocols such as two-phase-commit or quorum-consensus or timestamps or transactions;
this is just a sketch. One good source of information on how to compare results (termed “voting”)
can be found in the n-version programming literature.

7. Examples of Validation Tests Conducted Against the
SAJACC Use Cases
The use case scenarios given above have been designed to facilitate demonstration and testing of
cloud products, cloud API usage, and of the applicability of standards and standards-based
software approaches in real-world settings. While these have not yet risen to the level of full
conformance testing or of conformity assessment, the SAJACC use cases do already permit such
demonstrations and are a step along the road to a full validation program. In the basic diagram of
the SAJACC process illustrated in Figure 1 in Section 1 of this report, this type of demonstration
corresponds to step 4 of the process.

NIST SAJACC Working Group Page 42 February 12, 2013

Several of the SAJACC use cases have already attracted community-based demonstration
examples. Other examples were written by a NIST contractor, Jin Tong, and refined iteratively
with input from the SAJACC working group. The output of these exercises spanned most of the
use cases in the Cloud Management category (Section 3 of this report) and several from the Cloud
Interoperability category (Section 4). Community input during these example validation tests
was received from one commercial vendor (Microsoft Corporation for the Azure product) and
two different standards organizations (SNIA for the CDMI reference implementation, and OGF
for some OCCI-related examples running against an OpenNebula instance).

While not yet comprehensive, these examples have been sufficient to demonstrate the potential
usefulness of a larger-scale effort to organize, gather or conduct, document and validate
demonstrations of this nature. In addition, several of the NIST-prepared examples and
community contributions resulted in downloadable test code published on the NIST Cloud
Computing TWiki that remains available for those who would like to reproduce or to extend these
results on their own. In the “Conclusions” section below, we include a recommendation for NIST
to develop and support a more comprehensive method to carry out and/or collect such
demonstrations, with input from the SAJACC working group and other relevant NIST Cloud
Computing working groups as appropriate.

7.1 Examples of SAJACC Use Case Reports
The first example report below for SAJACC use case 3.4 “Copy Data Objects Into A Cloud” was
presented on Feb. 15, 2011 in teleconference number 6, carried out the Amazon S3 protocol using
AWS services and also tested against a NIST-hosted instance of Eucalyptus. A later similar
demonstration of this use case was conducted with the Azure cloud product. Additional example
reports are included for use cases 3.7 “Allocate VM Instance”, 4.1 “Copy Data Objects Between
Cloud Providers” and 5.7 “Sharing Access To Data In A Cloud”. A larger collection of reports,
code and annotated listings is contained in the SAJACC meeting TWiki pages. Listings of the
source code used to prepare these reports are included in Appendix D.

NIST SAJACC Working Group Page 43 February 12, 2013

NIST Cloud Computing Use Case
Testing Report

3.4 Copy Data Objects Into A Cloud

This test driver implements Success Scenario 1 (cloud-subscriber-to-network copy, IaaS,
PaaS, SaaS) of Use Case 3.4.

Test Scenario:

 The cloud-subscriber determines a local file, helloworld.txt, for copying to the cloud-

provider's system.
 The cloud-subscriber creates a client handle in preparation to issue commands to the cloud-provider's system

using pre-acquired credentials.

 The cloud-subscriber issues a command to create a container: S3Bucket [name=test-
bucket-sajacc-usecases-3-
4675737726,location=US,creationDate=null,owner=null] Metadata={Content-
Length=0, storage-class=STANDARD, Content-Type=application/xml}.

 The cloud-subscriber issues a command to create an object in the container created, and transfers
the local file helloworld.txtto the cloud-provider's system.

Verifying test result:

 Download Test Object: S3Object [key=helloworld.txt, bucket=test-bucket-sajacc-usecases-3-4675737726,
lastModified=Tue Feb 15 12:38:17 EST 2011,
dataInputStream=org.jets3t.service.impl.rest.httpclient.HttpMethodReleaseInputStream@337d0f,
Metadata={ETag=8ddd8be4b179a529afa5f2ffae4b9858, Content-Length=13, Last-Modified=Tue Feb 15 12:38:17
EST 2011, md5-hash=8ddd8be4b179a529afa5f2ffae4b9858, Content-Type=application/octet-stream}].

 Download Test Object converted to string as: Hello World!.

 MD5 hash comparison against source file helloworld.txt returned true.

Cleaning up testing objects: helloworld.txt.

Cleaning up testing container: test-bucket-sajacc-usecases-3-4675737726.

NIST SAJACC Working Group Page 44 February 12, 2013

NIST Cloud Computing Use Case
Testing Report

3.7 VM Control: Allocate VM Instance

This test driver implements Success Scenario 1 ((AllocateVM, IaaS))of Use Case 3.7 using
AWS SDK for Java.

Test Scenario - Success Scenario:

 The cloud-subscriber creates a client handle in preparation to issue commands to the cloud-
provider's system using pre-acquired credentials.

 (1) The cloud-subscriber requests a specific pre-defined Virtual Machine image
supplied by the cloud-provider (O/S, CPU cores, memory, and security) and
launches new VM instances.

o Started Instance {InstanceId: i-49FF098A, ImageId: emi-F68218F3, State:
{Code: 0, Name: pending, }, PrivateDnsName: 0.0.0.0, PublicDnsName:
0.0.0.0, StateTransitionReason: NORMAL: -- [], KeyName: uc_test,
AmiLaunchIndex: 0, ProductCodes: null, InstanceType: c1.medium,
LaunchTime: Tue Mar 22 10:51:55 EDT 2011, Placement: {AvailabilityZone:
cluster1, GroupName: null, }, KernelId: eki-6B1B1E12, RamdiskId: eri-
45281D7A, Platform: null, Monitoring: {State: false, }, SubnetId: null,
VpcId: null, PrivateIpAddress: null, PublicIpAddress: null, StateReason:
null, Architecture: null, RootDeviceType: null, RootDeviceName: null,
BlockDeviceMappings: null, VirtualizationType: null, InstanceLifecycle:
null, SpotInstanceRequestId: null, License: null, ClientToken: null,
Tags: null, }

o Waiting for the VM instance: i-49FF098A to be ready
o The VM instance is ready, details: {InstanceId: i-49FF098A, ImageId: emi-

F68218F3, State: {Code: 16, Name: running, }, PrivateDnsName:
172.19.1.34, PublicDnsName: 192.168.2.51, StateTransitionReason: NORMAL:
-- [UPDATE], KeyName: uc_test, AmiLaunchIndex: 0, ProductCodes: null,
InstanceType: c1.medium, LaunchTime: Tue Mar 22 10:51:55 EDT 2011,
Placement: {AvailabilityZone: cluster1, GroupName: null, }, KernelId:
eki-6B1B1E12, RamdiskId: eri-45281D7A, Platform: null, Monitoring:
{State: false, }, SubnetId: null, VpcId: null, PrivateIpAddress: null,
PublicIpAddress: null, StateReason: null, Architecture: null,
RootDeviceType: null, RootDeviceName: null, BlockDeviceMappings: null,
VirtualizationType: null, InstanceLifecycle: null, SpotInstanceRequestId:
null, License: null, ClientToken: null, Tags: null, }

 (3) The cloud-subscriber has secure launching and administration of their VM
instance.

o The cloud-subscriber issues shell command uname -a; uptime through SSH session
extablished to the VM instance using the private key from key pair:.uc_test

o Issue command:uname -a; uptime to ubuntu@192.168.2.51
 Shell command returns: Linux ip-172-19-1-34 2.6.31-22-generic-

pae #73-Ubuntu SMP Fri Feb 11 18:39:01 UTC 2011 i686

NIST SAJACC Working Group Page 45 February 12, 2013

GNU/Linux 14:53:44 up 1 min, 0 users, load average: 0.38,
0.11, 0.03

Cleaning up: Terminate the running VM instance: i-49FF098A.

 Instance terminated.

NIST SAJACC Working Group Page 46 February 12, 2013

NIST Cloud Computing Use Case Testing
Report
3.7 VM Control: Allocate VM Instance
This test driver implements Success Scenario 1 ((AllocateVM, IaaS))of Use Case 3.7
using OCCI API.

Test Scenario - Success Scenario:

 (1) The cloud-subscriber requests a specific pre-defined Virtual Machine image
supplied by the cloud-provider (O/S, CPU cores, memory, and security) and
launches new VM instances.

o Started Instance 50
o The VM instance is ready, details: <COMPUTE

href="http://clc:4567/compute/50"><ID>50</ID><CPU>1</CPU><MEMORY>
1024</MEMORY><NAME>sajacc-test-
vm</NAME><INSTANCE_TYPE>small</INSTANCE_TYPE><STATE>ACTIVE</STATE
><DISK id="0"><STORAGE href="http://clc:4567/storage/2"
name="ttylinux"/><TYPE>DISK</TYPE><TARGET>hda</TARGET></DISK><NIC
><NETWORK href="http://clc:4567/network/4" name="Public
network"/><IP>192.168.1.242</IP><MAC>02:00:c0:a8:01:f2</MAC></NIC
></COMPUTE>

 (3) The cloud-subscriber has secure launching and administration of their VM
instance.

o The cloud-subscriber issues shell command uname -a; uptime through SSH
session extablished to the VM instance using the private key from key pair.

o Issue command:uname -a; uptime to sajacc@192.168.1.242
 Shell command returns: Linux sajacc-test-vm 2.6.20 #1 PREEMPT

Mon Aug 17 20:32:57 MST 2009 i686 GNU/Linux 01:14:55 up 0
min, load average: 0.00, 0.00, 0.00

Cleaning up: Terminate the running VM instance: 50.

 Instance terminated.

NIST SAJACC Working Group Page 47 February 12, 2013

NIST Cloud Computing Use Case
Testing Report

4.1 Copy Data Objects between Cloud-Providers

This test driver implements `Success Scenario 1 of Use Case 4.1 using Eucalyptus Cloud as cloud-
provider-1 and CDMI as cloud-provider-2.

Test Scenario:

 The cloud-subscriber authenticates to cloud-provider-1 (an Eucalyptus/Walrus

Interface) and creates object 'test-container-sajacc-usecases-4-1559744109/helloworld.txt'.

 The cloud-subscriber authenticates to cloud-provider-1 (an Eucalyptus VM) and

starts an SSH session.

 The cloud-subscriber executes a command on cloud-provider-1 to download a data object

from the S3 service from the same cloud provider through an SSH session.

o HTTP get (s3curl) command is:

source ~/test/eucarc; cd ~/test/s3-curl; ./s3curl.pl --id
$EC2_ACCESS_KEY --key $EC2_SECRET_KEY --get -- -s -v
$S3_URL/test-container-sajacc-usecases-4-
1559744109/helloworld.txt > ~/helloworld.txt

 The cloud-subscriber determines to copy helloworld.txt to cloud-provider-
2 (a CDMI provider).

 The cloud-subscriber run a shell command from __cloud-provider-
1 (an Eucalyptus VM) to create a container: test-container-sajacc-usecases-4-

1559744109 in cloud-provider-2 (a CDMI provider).

o the command used to create container is:

curl -i -X PUT http://cdmi-server:9090/cdmi-server/test-
container-sajacc-usecases-4-1559744109 --header 'Content-
type:application/vnd.org.snia.cdmi.container+json' --header 'X-
CDMI-Specification-Version:1.0' --data '{ "metadata":{ } }'

 The cloud-subscriber run a shell command from cloud-provider-1 (an Eucalyptus

VM) to create an object 'helloworld.txt' in the container created.

o the command used to create object is:

curl -i -X PUT http://cdmi-server:9090/cdmi-server/test-
container-sajacc-usecases-4-1559744109/helloworld.txt --header
'Content-type:application/vnd.org.snia.cdmi.dataobject+json' --
header 'X-CDMI-Specification-Version:1.0' --data '{
"mimetype":"text/plan", "value":"Hello World!"}'

Verifying test result:

NIST SAJACC Working Group Page 48 February 12, 2013

 Download Source Object from cloud-provider-1(Eucalyptus)
 Downloaded Source Object converted to string as: Hello World!.
 Download Destination Object from cloud-provider-2(CDMI).
 Downloaded Destination Object converted to string as: Hello World!.
 Compare against source data returned true.

Cleaning up testing objects from CDMI: helloworld.txt.

Cleaning up testing container from CDMI: test-container-sajacc-usecases-4-1559744109.

Cleaning up testing objects from S3: helloworld.txt.

Cleaning up testing container from S3: test-container-sajacc-usecases-4-1559744109.

NIST SAJACC Working Group Page 49 February 12, 2013

NIST Cloud Computing Use Case
Testing Report

5.7 Sharing of access to data in a cloud

This test driver implements `Success Scenario 1 A cloud-subscriber who owns objects sends a request to a cloud-
provider to change the ACL for one or more of those objects of Use Case 5.7 using S3 interface.

Test Scenario - Success Scenario 1:

 The cloud-subscriber issues a command to create a container: test-bucket-sajacc-usecases-5-
71347539391, and create an object in the container created, and transfers the local
file, helloworld.txt, to the cloud-provider's system.

 Trying to access the object without "read" (or equivalent) access to the object, with all default ACL
setting, /test-bucket-sajacc-usecases-5-71347539391/helloworld.txt, got back the
following response:

o response status code = 403
o response reason phrase = Forbidden

 The cloud-provider provides an Access Control List (ACL) for each data object and for each
data object container. An ACL contains a set of ACL entries, each of which lists a set of
permitted access modes (e.g., read, write, delete, append, truncate, traverse) and the
identities of a set of cloud-subscribers to which the modes apply. In this case, the cloud-subscriber
updates the ACL of the data object to grant (read) access right to all authenticated users.

 As an unauthenticated user, trying to access the object after the cloud-subscriber granted "read" (or
equivalent) access to only authenticated, /test-bucket-sajacc-usecases-5-
71347539391/helloworld.txt, as expected got back the following response (expecting http 403):

o response status code = 403
o response reason phrase = Forbidden

 Authenticated as test user 2 (testuser2), who has been granted read permission to the object.
Downloaded the object (test-bucket-sajacc-usecases-5-71347539391,
helloworld.txt): S3Object [key=helloworld.txt, bucket=test-bucket-sajacc-usecases-5-71347539391,
lastModified=Tue Mar 08 11:54:28 EST 2011,
dataInputStream=org.jets3t.service.impl.rest.httpclient.HttpMethodReleaseInputStream@12be1bd,
Metadata={ETag=8ddd8be4b179a529afa5f2ffae4b9858, Content-Length=13, Last-Modified=Tue Mar 08
11:54:28 EST 2011, md5-hash=8ddd8be4b179a529afa5f2ffae4b9858, Content-Type=application/octet-
stream}]

Cleaning up testing objects: helloworld.txt.

Cleaning up testing container: test-bucket-sajacc-usecases-5-71347539391.

Editor’s Notes:

Need to add two account credentials in the configuration file.

NIST SAJACC Working Group Page 50 February 12, 2013

8. Comparison with other NIST Cloud Computing Group
Organizational Structures, Roadmaps, and Output
The organization and numbering of the original SAJACC use cases was set early in the process
that produced these scenarios, and was retained to permit consistent validation exercises to be
conducted according to the procedure outlined in Figure 1 of Section 1 of this report. During the
intervening two years, as SAJACC validation was being carried out, a much more complete
Reference Architecture and Taxonomy were developed by the corresponding NIST Cloud
Computing working group, and extensive other roadmap organizational activities were carried out
by the NIST Cloud Computing Standards Roadmap working group.

Other, more general Federal Cloud Computing business use cases were developed and
documented by the NIST Cloud Computing Business Use Cases group, which were used as input
wherever possible in developing the SAJACC technical use cases presented here. The NIST
Cloud Computing Security working group has also conducted an extensive survey of the cloud
computing security area. This survey resulted in a comprehensive list of cloud computing security
impediments and remedies and an associated report.

This section of the current document is devoted to comparison of the organizational structure of
the SAJACC use case listing with the output of the above groups. Wherever possible, these have
been derived directly from the working group materials and reports as documented on the NIST
Cloud Computing web site and TWiki.

In the following sub-sections, the diagrams given can be compared with the original NIST
SAJACC working group use case organizational diagram provided in Figure 2 of Section 2 above.

Figure 3: NIST Cloud Computing Reference Architecture

NIST SAJACC Working Group Page 51 February 12, 2013

8.1 NIST Cloud Computing Reference Architecture and Taxonomy
Figure 3 gives the current NIST Cloud Computing Reference Architecture diagram as contained
in NIST Special Publications 500-292 and 500-293(Volumes I-II). The process that was used to
develop this architecture also resulted in an extensive taxonomy, which is shown in a high-level
overview in Figure 4, and specialized taxonomies for the Cloud Service Agreement and Cloud
SLA components, as shown in Figures 5 and 6.

We refer to these collectively as the NIST Cloud Computing Reference Architecture and
Taxonomy group output. This same architecture has been used as an underlying organizational
pattern for the work of the NIST Cloud Standards Roadmap group in preparing the draft roadmap
(NIST SP 500-293 Volume III).

Figure 4: NIST Cloud Computing Reference Architecture Taxonomy (overall view)	

	

Figure 5: Cloud Master Service Agreement taxonomy

NIST SAJACC Working Group Page 52 February 12, 2013

8.2 NIST Cloud Computing Security
The NIST Cloud Computing Security working group has also produced an extensive white paper,
and has codified some of the related concepts into a listing of Cloud Computing Impediments and
Mediations. Figure 7 gives a mind map derived from this listing in a format suitable for
comparison with the SAJACC Use Case and other NIST Cloud Computing working group output
discussed above.

8.3 NIST Business Use Cases

Several broadly based US Government use cases were gathered by the NIST Cloud Computing
Business Use Cases group, and were referred to by the SAJACC group during preparation of the
technical use cases presented in previous sections. A close collaboration between the two groups
will also be helpful in future SAJACC activities.

8.4 US VA Bronze, Silver and Gold Use Cases
A valuable analysis of the NIST SAJACC use cases was provided by the US Department of
Veterans Affairs, which adopted the general concept and construction of the SAJACC use cases,
but extended them to include other sections, including an overall identification and tracking block
and sections on “Background”, “Definitions”, “Concept of Operations”, “Primary Actors”,
“Business Goal”, “Service Model”, “Deployment Model”, “Necessary Conditions”, “Priorities
and Risks”, “Essential Characteristics”, “Normal Flow”, “Frequency of Use”, “Special
Requirements”, “Notes and Issues”, and a “Risk Register” comprising a table detailing a
description, likelihood, severity, countermeasures and status for each risk identified.

Figure 6: Draft Cloud Service Level Agreement taxonomy

NIST SAJACC Working Group Page 53 February 12, 2013

The US VA use cases were further categorized into Bronze, Silver and Gold level designations
depending on these considerations and the degree to which the cloud functionality described in
each use case would be hosted within or have access to US VA agency resources.

A mind map showing the US VA use cases categorized into Bronze, Silver and Gold levels is
shown in Figure 8.

	

Figure 7: NIST Cloud Computing Security working group Impediments and Mitigations

NIST SAJACC Working Group Page 54 February 12, 2013

8.5 Other Sources of Input
In addition to the official NIST Cloud Computing working group output, the SAJACC group
recruited and received presentation of reports from other community sectors during its working
group meetings. These are recorded in the SAJACC meeting materials pages, and notably
included public documents provided by several standards development organizations, including
OGF, DMTF and TM Forum, as well as other public documentation provided by working group
participants (references [DMTF], [IETF-SCIM], [LIBCLOUD], [NSTIC], [OGF], [ORACLE],
[SNIA], [TMFORUM]). Several of these have resulted in candidate use cases that are still under
development and that might fit into an expanded SAJACC Use Case set as described below, but
are not yet to the maturity level of the other use cases included in this report.

8.6 Analysis and Recommendations for SAJACC Use Case
Reorganization
Comparison of the mind map diagrams derived from the above input with the SAJACC use case
organization given in Sections 1-2 shows the opportunity for reorganization of the use case
scenarios into a form that would be more compatible with the reference architecture and with the
taxonomies produced by the other NIST Cloud Computing working groups. There are several
points of overlap between Figure 4, for example, and Figure 2. Specifically, the Cloud Services
Management, Cloud Broker and Security portions of these diagrams show several points of
contact, and components in the Cloud Interoperability portion of the SAJACC use cases can be
rearranged into sub-branches of the reference architecture taxonomy shown in Figure 4.

It appears necessary to expand the diagram given in Figure 4 with input from the Cloud Service
Agreement and Cloud SLA diagrams from Figures 5 and 6, and to further enhance the

	

Figure 8: Bronze, Silver and Gold use cases identified from SAJACC use case examples
by the US Department of Veterans Affairs

NIST SAJACC Working Group Page 55 February 12, 2013

combination of topics already present in the Security branches of the SAJACC and Reference
Architecture diagrams by inclusion of the more comprehensive listing from the NIST Cloud
Computing Security group as given in Figure 7.

Several of the branches identified in the service agreement and SLA diagrams have points of
contact with the existing SAJACC use case categories, but refinement of the SAJACC diagram to
include SLA concepts in particular seems to be necessary. An overall classification could thus be
built for future versions of the SAJACC use case scenarios that would both provide a better fit to
the overall NIST reference architecture and taxonomy, and also include a more comprehensive
listing in the areas of cloud service agreements, SLAs and cloud security considerations.

A recommendation proceeding from the above is to prepare technical use cases that derive from
this expanded taxonomy, but that are formulated in terms that are similar to the previous
SAJACC use case scenarios, with actors, goals, success scenarios and failure conditions, failure
handling, assumptions, requirements and credit identified as for the previously developed use
case scenarios in a form that will encourage the use of the SAJACC process for demonstration
and validation of related cloud products and standards in terms of their applicability to these
scenarios. Considering the examples given in the US VA use cases, a more comprehensive set of
sections can be implemented that includes some or all of the categories identified in the US VA
set, and optionally could consider a separation into categories depending on the level of access of
the cloud functionality to government agency internal resources.

Input from the community at the NIST Cloud Computing and Big Data Forum and Workshop
held January 15-17, 2013 reinforced the above points and appeared to represent a broad
consensus that the plans of the working group presented above and summarized below represent a
strong plan for moving forward. Additional points that were made at the workshop included the
need to provide for measurement of performance of various cloud products and standards when
meeting the terms of a given technical use case, as well as the corresponding need to gather
further input from additional USG agencies and business use cases.

As a final recommendation in light of the fundamental importance of security to all cloud usage
scenarios, we recommend the addition of a “Security Considerations” section into all of the
SAJACC technical use cases, which should include a risk register of the type described in the US
VA use cases, but also have room for explicit inclusion of cloud security impediments and
mitigations as described by the NIST Cloud Computing Security working group. Previous
SAJACC use cases should be examined and updated to include these entries as part of the
reorganization and reclassification, and all future SAJACC use cases should include such entries
on an essential basis, along with each of the other use case factors.

9. Conclusions
This report has presented a summary of the concepts and a listing of the technical use cases
prepared by the NIST SAJACC working group during the first two years of its operation. An
extensive collection of use cases has been prepared, and several of these have been subjected to
real-world tests using cloud computing software, both open source and commercial, and also to
comparisons with capabilities provided by several cloud computing standards. These scenarios

NIST SAJACC Working Group Page 56 February 12, 2013

were then refined through additional interactions with US Federal Government agencies, notably
the US Department of Veterans Affairs, and extended to meet their needs for a multi-tiered
system divided in terms of levels of support, security and access to USVA resources.

The process has been sufficient to identify a major set of cloud computing capabilities that are
amenable to validation testing for the applicability of cloud standards, standards-based products,
and individual cloud product APIs to assess the capabilities of these standards and products
against these use cases. Several such demonstrations were conducted by the SAJACC group
itself during the first portion of this work, and a pattern for conducting validation tests as
described in Section 1 of this report has been developed.

To further improve the SAJACC process, we propose that work be done on a continuing basis by
the SAJACC group to expand and reorganize the SAJACC use case listings, using the output of
other NIST Cloud Computing working groups as a guide. We also recommend expanding the set
of use cases to make them more complete with respect to the NIST Cloud Computing Reference
Architecture and Taxonomy, Business Use Cases, Security and Standards Roadmap output, and
that each of the technical use cases be extended to include a “Security Considerations” section.

In list form, the recommendations of the SAJACC working group proceeding from this phase of
its efforts are as follows:

1. Replace the SAJACC use case internal organization with one based on the current
structure of the NIST Cloud Computing Reference Architecture and Taxonomy;

2. Add further use cases based on current extensions to this taxonomy for recently
developed Cloud SLA Metrics and NIST Cloud Computing Security components;

3. Integrate further input as necessary from the NIST Business Use Case and Standards
Roadmap groups, and work closely with these groups to identify additional use cases;

4. Study and adopt use case template elements from the US VA Bronze, Silver and Gold
Use Cases and from additional formal input from US Government agencies;

5. Add automation and tooling, if possible, to the NIST web site to support community
downloading of the NIST SAJACC use cases and their associated templates for testing
scenarios and uploading of externally produced test results;

6. Conduct, invite and document additional use case demonstrations of cloud standards and
applicable products against the SAJACC use cases to illustrate their features;

7. Solicit and add further recommendations from the community at large through meetings
of the SAJACC working group.

This report can therefore be taken to comprise the conclusion of Phase I of the SAJACC process,
and the plan for initiation of Phase II with the goal to implement the above recommendations.

In summary, we recommend that the SAJACC process be enhanced with the above adjustments
beyond its initial phase and continued to complete the initial design for validation testing, as
given in Section 1 of this report, and to extend this design as needed to support a more
comprehensive framework for technical use case definition, validation and testing in a format that
is consistent with the ongoing work of the rest of the NIST Cloud Computing working groups.

NIST SAJACC Working Group Page 57 February 12, 2013

Appendix A: Acronyms and Abbreviations
Selected acronyms and abbreviations used in this report are defined below.

API Application Programmer Interface

FISMA Federal Information Security Management Act

IaaS Infrastructure as a Service

IT Information Technology

ITL Information Technology Laboratory

NIST National Institute of Standards and Technology

NSTIC National Strategy for Trusted Identities in Cyberspace

PaaS Platform as a Service

OMB Office of Management and Budget

REST Representational State Transfer

SaaS Software as a Service

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SP Special Publication

UDDI Universal Description, Discovery and Integration

VM Virtual Machine

WSDL Web Services Description Language

	

NIST SAJACC Working Group Page 58 February 12, 2013

Appendix B: Glossary
Authentication Credential. Something that an entity is, has, or knows that allows an entity to
prove its identity to a system.

Cloud-subscriber. An authenticated person that accesses a cloud system over a network. A
cloud-subscriber may possess administrative privileges, such as the ability to manage virtual
machines, or the ability to regulate access by users to cloud resources the cloud-subscriber
controls.

Data Object. A logical container of data, that can be accessed over a network. E.g., a blob. May
be an archive, such as specified by the TAR format.

Physical Data Container. A storage device physically suitable for transferring data between
cloud-subscribers and clouds; e.g., a hard disk. There has to be a standard format that the
Provider supports (e.g., EIDE, IDE, SCSI). The physical data container must be formatted with a
standard logical organization, such as FAT32, ufs, etc.

Provider. An organization that offers a network service that satisfies the definition of cloud
computing given in Section

SLA. A document explaining expected quality of service and legal guarantees. Contains at least
the following data fields:

CloseDelay: the minimum latency, expressed in a common time unit, for a cloud provider to
respond to a user’s request to close an account.

User. A person or computer that accesses a cloud system over a network. A user may be
authenticated but can also be anonymous. A user does not have administrative privileges on a
cloud system.

	

NIST SAJACC Working Group Page 59 February 12, 2013

Appendix C: Extended Use Cases and Use Case Templates
from the US Department of Veterans Affairs

Background and Design Philosophy
The Austin Information Technology Center (AITC) of the US Department of veterans Affairs
initiated efforts in 2012 to document use cases to support a VA cloud on the basis of the Cloud
First Mandate from the US Chief Information Officer, which requires that each USG agency
implement cloud computing services whenever possible. The goals of this effort were to give the
VA maximum capacity utilization, improved IT flexibility, and minimized costs. During the
startup period, AITC Cloud services were designated only for test and development. A plan is in
place based on lessons learned from this period to bring pre-production and production services
online in 2013.

The use cases generated by the VA were broken down into four categories, depending on factors
that included the level of access to VA internal networks and other related considerations. An
initial set of use cases was generated based on the SAJACC use case scenarios documented in the
current report. Once experience is gathered from the initial test, development and pre-production
phases of deployment, the VO plans to generate additional use cases.

VA Use Case Categories
30	
 day	
 Free	
 Demo – A free environment with the ability to create a few Virtual Machines (VMs)
and then try the environment before you purchase a Bronze, Silver, or Gold environment. This
environment provides the ability to load any Operating System with any application to which
users have licensed access. User applications and servers do not have to pass any AITC security
scans. User teams can modify the environment how and when they like. The environment will
be in an isolated sandbox and cannot access other VA domains.

Bronze – Users at the Bronze level can create a sandbox environment, 100% self-service, create
VM templates/master images, limited Internet access, and the VMs can’t access other VA
domains. This environment provides the ability to load any Operating System with any
application you have access to. User applications and servers do not have to pass any AITC
security scans. User teams can modify the environment how and when they like. The
environment will be in an isolated sandbox and cannot access other VA domains.

Silver - Includes Bronze-level services, Limited VA network access, filtered outgoing internet,
pool of IP addresses, can join VA domains, DNS assistance, Use provided VM templates/master
images, Continuous Security Monitoring, OS patching. This environment provides the ability to
load a hardened VA build of Windows 2008 and RHEL. User VMs are scanned for
vulnerabilities by AITC Enterprise Operations. User teams can modify the environment how and
when they like. This environment is able to join other VA domains.

Gold - Includes Bronze and Silver level services, Infrastructure monitoring, access to Enterprise
Operations labor resources to accelerate timelines. This environment provides the ability to load a
hardened VA build of Windows 2008 and RHEL. User VMs are scanned for vulnerabilities by
AITC Enterprise Operations. User teams can modify the environment how and when they like.

NIST SAJACC Working Group Page 60 February 12, 2013

The environment is able to join other VA domains. The ability to engage Enterprise Operations
labor resources to accelerate deliverables and Infrastructure monitoring is included.

Characteristics of VA Use Case Templates
When comparing the use cases prepared by the Department of Veterans Affairs to those of the
original SAJACC examples, the SAJACC group noted the addition of several standard fields and
an extended range of documentation regarding potential risks and mitigations in the form of a
“risk register”. Other features of the VA use cases included delineation of the service and
deployment models to be used, a section on “concept of operations” and a description of
necessary conditions.

The SAJACC group felt that these components of the VA use case template patterns are each
useful additions to the format of the basic SAJACC use cases already assembled. As a result, the
recommendation of the SAJACC working group is to incorporate similar changes, including
addition of a section on “security considerations” that can include the “risk register” and other
additional sections, in a future review and update of the basic SAJACC use case scenarios.

Listing of Current VA Use Cases
The following table summarizes the VA use cases that have been created to date.

Bronze Silver Gold
Close Account Close Account Close Account
Copy Data To/From Cloud Cloud Burst from Data

Center to Cloud
Cloud Burst from Data
Center to Cloud

Create Virtual Machine Copy Data To/From Cloud Copy Data To/From Cloud
Erase Data Objects Copy Objects between Cloud

Providers
Copy Objects between Cloud
Providers

Manage VM State Create a Virtual Machine Create a Virtual Machine
Open Account Erase Data Objects Erase Data Objects
Remote Console Plugin
Performance

Manage Virtual Machine
State

Manage Virtual Machine
State

Terminate an Account Open an Account Open an Account
Testing Environment Security Monitoring Security Monitoring
Use Case Identification Terminate an Account Terminate an Account
 Testing Environment Testing Environment
 Use Case Identification Use Case Identification
 Remote Console Plugin

Performance
User Authentication

Example VA Use Case
The following pages document an example of one of the VA use cases for purposes of illustrating
their component features. A full set of these use cases can be downloaded from the SAJACC
meeting materials pages for the series of meetings held in late 2012.

NIST SAJACC Working Group Page 61 February 12, 2013

!!
Page!1! !

! !

ENTERPRISE OPERATIONS

!

1. USE&CASE&IDENTIFICATION&

Use$Case$Name:$ Bronze!Close!an!Account!

Agency:$ Veterans!Affairs!(VA)!Austin!Information!Technology!Center!(AITC)!

Model$Matrix:$! &&SaaS& ! &&PaaS& " &&IaaS&

$ " &&Private! ! & Community& ! &&Public! ! &&Hybrid!

Created$By:$ Rod!E!Peterson!
(rod.peterson@va.gov)&

Last$Updated$
By:$

Rod!E!Peterson!(rod.peterson@va.gov)&

Date$Created:$ 8/15/2012! Date$Last$
Updated:$

9/10/2012&

Version:$ 1.1! Changes:$ Original!draft.!

&

2. BACKGROUND&
Cloud!provider!will!close!an!existing!account!for!a!Cloud!consumer.!!!

3. DEFINITIONS&
N/A!!!

4. CONCEPT&OF&OPERATIONS&
4.1&& Current&System&

N/A!

4.2&& Desired&Cloud&Implementation&&
Cloud!consumer!contract!expires!or!Cloud!consumer!notifies!Cloud!provider!to!close!contract.!!Cloud!provider!

will!close!the!existing!account!for!a!Cloud!consumer,!and!then!the!Cloud!provider!notifies!the!Cloud!consumer!
that!the!account!is!closed.!

5. PRIMARY&ACTORS&
The!Organizational!Administrator!for!the!Cloud!consumer.!

6. BUSINESS&GOAL&
The!Cloud!consumer!will!not!be!able!to!access!the!Bronze!environment.!!!

7. SERVICE&MODEL&
IaaS!was!chosen!because!it!closely!aligns!with!our!current!Virtual!Infrastructure.!

8. DEPLOYMENT&MODEL&
Currently!we!offer!Private!Cloud!because!we!lack!experience!in!deployment!of!Cloud!Services.!AITC!plans!to!
migrate!to!a!Hybrid!Cloud!after!a!successful!launch!of!our!Bronze,!Silver,!and!Gold!Private!Clouds.!

NIST SAJACC Working Group Page 62 February 12, 2013

!!
Page!2! !

! !

9. NECESSARY&CONDITIONS&
9.1 Security:!!Cloud!consumer!must!be!notified!that!the!account!has!been!closed.!
9.2 Interoperability:!!Cloud!consumer!will!use!vCloud!Director!to!access!the!environment.!

9.3 Portability:!!N/A!
9.4 Other:!!N/A!

10. PRIORITIES&AND&RISKS&
N/A!

11. ESSENTIAL&CHARACTERISTICS&
On>demand$self>service:& Cloud!consumer!will!have!the!ability!to!selfUprovision!resources!in!Bronze!

Environment.&
Broad$network$access:&!& Bronze!environment!allows!network!access!within!Cloud!consumer’s!

environment,!but!does!not!allow!access!to!other!VA!networks.&
Resource$pooling:& Cloud!consumer!has!the!ability!to!create!any!size!VM!within!their!environment!

total!capacity.&
Rapid$elasticity:!!& Cloud!consumer!can!expand!the!resources!of!any!VM!within!their!environment.&
Measured$service:!!& Cloud!provider!does!not!offer!performance/monitoring!service!within!Bronze!

Environment.&
!

12. NORMAL&FLOW&
Organizational!Administrator!will!not!be!able!to!access!the!Bronze!environment.!

13. FREQUENCY&OF&USE&
Cloud!provider!will!close!the!account!one!time.!

14. SPECIAL&REQUIREMENTS&
N/A!

15. NOTES&AND&ISSUES&
N/A!

NIST SAJACC Working Group Page 63 February 12, 2013

!!
Page!3! !

! !

16. RISK®ISTER&
&

Date& Description& Likelihood& Severity& Countermeasures& Status&

08/15/2012! Cloud!provider!closes!
the!account!too!
early.!

Low!(<30%)! High!(>70%)! Proper!steps!defined!for!
Cloud!provider!to!verify!an!
account!should!be!closed.!
!

Current!

08/15/2012! Cloud!provider!
overcharges!the!
cloud!consumer.!

Low!(<30%)! Medium!(31U
70%)!

Proper!steps!defined!for!
Business!Office!to!not!charge!
Cloud!consumer!after!
account!has!been!closed.!

Current!

8/15/2012! Cloud!provider!fails!
to!notify!the!Cloud!
consumer!that!the!
account!is!closed!

Low!(<30%)! Medium!(31U
70%)!

Proper!steps!defined!for!how!
to!notify!Cloud!consumer!
that!the!account!is!closed.!

Current!

08/15/2012! Cloud!provider!fails!
to!revoke!the!Cloud!
consumer’s!
authentication!
information.!

Low!(<30%)! Medium!(31U
70%)!

Proper!steps!defined!for!how!
to!close!an!account.!!Cloud!
provider!will!need!to!test!
that!the!account!is!closed!
and!not!accessible!using!
proper!credentials.!

Current!
!
!
!
!
!
!

!

!
!

NIST SAJACC Working Group Page 64 February 12, 2013

Appendix D: Source Code Listings for Example Use Case
Demonstrations
The following pages include source code listings for some of the SAJACC demonstration
examples given in Section 7 in the main report above. This is not a complete set of listings, but
should be taken only as examples.

The first example given for demonstrations related to use case 3.4 “Copy Data Objects Into A
Cloud” includes separate source code for the Amazon S3 and Microsoft Azure products. Other
examples are included for virtual machine control using the AWS API and similar Eucalyptus
open source equivalent product and for the OGF OCCI standard using an OpenNebula
implementation, and for data transfer using a reference implementation of the CDMI standard
provided by SNIA.

The source code for the full set of example reports given in Section 7 is not included for the latter
two of these examples, since it is largely an aggregation of the code applicable to the separate
examples for S3 and CDMI already presented here.

Further downloadable source code files for these and other use case demonstrations are available
on the SAJACC meeting materials NIST TWiki pages at http://collaborate.nist.gov/twiki-cloud-
computing/bin/view/CloudComputing/SAJACC.

NIST SAJACC Working Group Page 65 February 12, 2013

UseCase3_4_CDMI

1

/* 1
 * DISCLAIMER: Certain commercial entities, equipment, or materials 2
 * may be identified in this document in order to describe an 3
 * experimental procedure or concept adequately. Such identification 4
 * is not intended to imply recommendation or endorsement by the 5
 * National Institute of Standards and Technology, nor is it intended 6
 * to imply that the entities, materials, or equipment are necessarily 7
 * the best available for the purpose. 8
 * 9
 * Design and implementation of this program was paid for by U.S. tax 10
 * dollars. Therefore it is public domain. However, the author and 11
 * NIST would appreciate credit if this program or parts of it are 12
 * used. 13
 * 14
 * $Id: UseCase3_4_CDMI.java 65 2011-02-22 17:39:29Z $ 15
 */ 16
package sajacc.usecases; 17
 18
import java.io.BufferedReader; 19
import java.io.FileReader; 20
import java.util.Random; 21
import java.util.ResourceBundle; 22
 23
import org.apache.http.Header; 24
import org.apache.http.HttpEntity; 25
import org.apache.http.HttpResponse; 26
import org.apache.http.client.HttpClient; 27
import org.apache.http.client.methods.HttpDelete; 28
import org.apache.http.client.methods.HttpGet; 29
import org.apache.http.client.methods.HttpPut; 30
import org.apache.http.entity.StringEntity; 31
import org.apache.http.impl.client.DefaultHttpClient; 32
import org.apache.http.util.EntityUtils; 33
 34
import com.google.gson.JsonParser; 35
 36
/** 37
 * UseCase3_4_CDMI uses [Apache HttpComponents] 38
 * (http://hc.apache.org/httpcomponents-client-ga/) as a client side 39
 * HTTP client library to communicate with a CDMI compliant 40
 * server. The testing code will be a stand-alone Java application and 41
 * executes the SAJACC use case scenario flows, and report out 42
 * progress. 43
 * 44
 * The report out can use simple text-based markup for better 45
 * readability. [Markdown](http://en.wikipedia.org/wiki/Markdown) 46
 * syntax is chosen for its simplicity and readability. Various 47
 * markdown conversion tools can be used to concert the output into 48
 * HTML or other format if desired. The report should highlight texts 49
 * that corresponds to the SAJACC use case text to show mapping of the 50
 * implementation to the use case. 51
 * 52
 */ 53
public class UseCase3_4_CDMI { 54
 55
 /** 56
 * The entry point of this test driver. 57
 * 58
 */ 59
 public static void main(String[] args) { 60
 61
 // File name of a test file under data directory to be copied 62
 // to the cloud. 63
 String objectName = "helloworld.txt"; 64
 String containerName = ""; 65
 String cdmiServerUrl = ""; 66
 67
 68
 // Generate a random bucket name everytime running the 69
 // test, to avoid any possible name conflicts. 70
 Random random = new Random(); 71

NIST SAJACC Working Group Page 66 February 12, 2013

UseCase3_4_CDMI

2

 72
 containerName = "test-container-sajacc-usecases-3-4" 73
 + random.nextInt(); 74
 75
 try { 76
 report("# NIST Cloud Computing Use Case Testing Report #"); 77
 report("## 3.4 Copy Data Objects Into A Cloud ##"); 78
 report("This test driver implements `Success Scenario 1 " + 79
 "(cloud-subscriber-to-network copy, IaaS, PaaS, SaaS)` " + 80
 "of [Use Case 3.4](http://www.nist.gov/itl/cloud/3_4.cfm) " + 81
 "using CDMI interface."); 82
 83
 report("Test Scenario:"); 84
 85
 /***/ 86
 report("* __The cloud-subscriber determines a local file__, `" 87
 + objectName 88
 + "`, __for copying to the cloud-provider's system__."); 89
 /***/ 90
 91
 /***/ 92
 // Reading from configuration file "cdmi.properties" from 93
 // classpath, to be used to instantiate a client instance 94
 ResourceBundle rb = ResourceBundle.getBundle("cdmi"); 95
 96
 // Compose the cdmiServerUrl based on configured 97
 // properties `cdmi-server-host` and `cdmi-server-port`. 98
 // In this case, assuming `http` is used and `cdmi-server` 99
 // is used as the context in the URL. 100
 cdmiServerUrl = "http://" + rb.getString("cdmi-server-host") 101
 + ":" + rb.getString("cdmi-server-port") + "/cdmi-server"; 102
 103
 // create a container 104
 createContainer(cdmiServerUrl, containerName); 105
 report("* __The cloud-subscriber issues a command to " 106
 + "create a container__: `" + containerName + "`."); 107
 /***/ 108
 109
 /***/ 110
 // Read the test object file from "data" directory 111
 BufferedReader in = new BufferedReader(new FileReader("data/" + 112
 objectName)); 113
 114
 // reading the content of the text file into a string 115
 String str; 116
 String content = ""; 117
 while ((str = in.readLine()) != null) { 118
 content += str; 119
 } 120
 121
 // create the object in the container 122
 createTextObject(cdmiServerUrl, 123
 containerName, 124
 objectName, 125
 content); 126
 report("* __The cloud-subscriber issues a command to " 127
 + "create an object in the container created, and " 128
 + "transfers the local file__ `" + objectName + "`" 129
 + "__to the cloud-provider's system__."); 130
 /***/ 131
 132
 /***/ 133
 report("Verifying test result:"); 134
 135
 HttpResponse response = getObject(cdmiServerUrl, 136
 containerName, 137
 objectName); 138
 139
 report("* Download Test Object. "); 140
 141
 142

NIST SAJACC Working Group Page 67 February 12, 2013

UseCase3_4_CDMI

3

 // Read downloaded data as a string to show 143
 String textData = extractEntityElementAsString(response, "value"); 144
 145
 report("* Download Test Object converted to string as: " + textData 146
 + "."); 147
 148
 // Verify the data downloaded against the source file, 149
 // using the equals method for simplicity. 150
 boolean valid = textData.equals(content); 151
 report("* Compare against source file `" + objectName 152
 + "` returned `" + valid + "`" + "."); 153
 /***/ 154
 } catch (Exception e) { 155
 e.printStackTrace(); 156
 } finally { 157
 try { 158
 report("Cleaning up testing objects: `" + objectName + "`."); 159
 deleteObject(cdmiServerUrl, containerName, objectName); 160
 } catch (Exception e) { 161
 e.printStackTrace(); 162
 } 163
 try { 164
 report("Cleaning up testing container: `" + containerName 165
 + "`."); 166
 deleteContainer(cdmiServerUrl, containerName); 167
 168
 } catch (Exception e) { 169
 e.printStackTrace(); 170
 } 171
 } 172
 } 173
 174
 public static void report(String message) { 175
 System.out.println(message + "\n"); 176
 } 177
 178
 // --- 179
 // Helper methods to talk to a CDMI server over its RESTful 180
 // interface per CDMI spec. 181
 // --- 182
 183
 /* create container */ 184
 private static HttpResponse createContainer(String cdmiServerUrl, 185
 String containerName) 186
 throws Exception { 187
 188
 HttpClient httpClient = new DefaultHttpClient(); 189
 190
 HttpPut httpput = new HttpPut(cdmiServerUrl + "/" + containerName); 191
 httpput.setHeader("Content-Type", 192
 "application/vnd.org.snia.cdmi.container+json"); 193
 httpput.setHeader("X-CDMI-Specification-Version", "1.0"); 194
 195
 String reqStr = "{\n"; 196
 reqStr += "\"metadata\" : {\n"; 197
 reqStr += "}\n"; 198
 reqStr += "}\n"; 199
 StringEntity inputEentity = new StringEntity(reqStr); 200
 httpput.setEntity(inputEentity); 201
 202
 return httpClient.execute(httpput); 203
 } 204
 205
 /* create text data object */ 206
 private static HttpResponse createTextObject(String cdmiServerUrl, 207
 String containerName, 208
 String objectName, 209
 String objectContent) 210
 throws Exception { 211
 212
 HttpClient httpClient = new DefaultHttpClient(); 213

NIST SAJACC Working Group Page 68 February 12, 2013

UseCase3_4_CDMI

4

 HttpPut httpput = new HttpPut(cdmiServerUrl + "/" + containerName + "/" + objectName); 214
 httpput.setHeader("Content-Type", 215
 "application/vnd.org.snia.cdmi.dataobject+json"); 216
 httpput.setHeader("X-CDMI-Specification-Version", "1.0"); 217
 String reqStr = "{\n"; 218
 reqStr += "\"mimetype\" : \"" + "text/plain" + "\",\n"; 219
 reqStr += "\"value\" : \"" + objectContent + "\"\n"; 220
 reqStr += "}\n"; 221
 StringEntity entity = new StringEntity(reqStr); 222
 httpput.setEntity(entity); 223
 return httpClient.execute(httpput); 224
 } 225
 226
 /* get data object */ 227
 private static HttpResponse getObject(String cdmiServerUrl, 228
 String containerName, 229
 String objectName) 230
 throws Exception { 231
 232
 HttpClient httpClient = new DefaultHttpClient(); 233
 HttpGet httpget = new HttpGet(cdmiServerUrl + "/" + 234
 containerName + "/" + 235
 objectName); 236
 237
 httpget.setHeader("Accept", 238
 "application/vnd.org.snia.cdmi.dataobject+json"); 239
 httpget.setHeader("Content-Type", 240
 "application/vnd.org.snia.cdmi.dataobject+json"); 241
 httpget.setHeader("X-CDMI-Specification-Version", "1.0"); 242
 return httpClient.execute(httpget); 243
 } 244
 245
 /* delete data object */ 246
 private static HttpResponse deleteObject(String cdmiServerUrl, 247
 String containerName, 248
 String objectName) 249
 throws Exception { 250
 251
 HttpClient httpClient = new DefaultHttpClient(); 252
 HttpDelete httpdelete = new HttpDelete(cdmiServerUrl + "/" + 253
 containerName + "/" + 254
 objectName); 255
 httpdelete.setHeader("Content-Type", 256
 "application/vnd.org.snia.cdmi.dataobject+json"); 257
 httpdelete.setHeader("X-CDMI-Specification-Version", "1.0"); 258
 return httpClient.execute(httpdelete); 259
 } 260
 261
 /* delete container */ 262
 private static HttpResponse deleteContainer(String cdmiServerUrl, 263
 String containerName) 264
 throws Exception { 265
 266
 HttpClient httpClient = new DefaultHttpClient(); 267
 HttpDelete httpdelete = new HttpDelete(cdmiServerUrl + "/" + 268
 containerName); 269
 httpdelete.setHeader("Content-Type", 270
 "application/vnd.org.snia.cdmi.dataobject+json"); 271
 httpdelete.setHeader("X-CDMI-Specification-Version", "1.0"); 272
 return httpClient.execute(httpdelete); 273
 } 274
 275
 // --- 276
 // Simple utility method to extract CDMI entity payload JSON 277
 // element using a Json parser to convenience. 278
 // --- 279
 private static String extractEntityElementAsString(HttpResponse response, 280
 String elementName) 281
 throws Exception { 282
 JsonParser parser = new JsonParser(); 283
 String payloadJson = EntityUtils.toString(response.getEntity()); 284

NIST SAJACC Working Group Page 69 February 12, 2013

UseCase3_4_CDMI

5

 return parser 285
 .parse(payloadJson) 286
 .getAsJsonObject() 287
 .get(elementName) 288
 .getAsString(); 289
 } 290
 291
} 292
 293

NIST SAJACC Working Group Page 70 February 12, 2013

UseCase3_4_Azure.java 2013-01-07

- 1/4 -

/**
 * Copyright 2006-2010 Soyatec
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Id
 */
package azure.usecases;

import java.io.FileInputStream;
import java.net.URI;
import java.util.Random;
import java.util.ResourceBundle;

import org.jets3t.service.utils.ServiceUtils;
import org.soyatec.windowsazure.blob.BlobStorageClient;
import org.soyatec.windowsazure.blob.IBlobContainer;
import org.soyatec.windowsazure.blob.IBlobContents;
import org.soyatec.windowsazure.blob.IBlobProperties;
import org.soyatec.windowsazure.blob.IBlockBlob;
import org.soyatec.windowsazure.blob.internal.BlobContents;
import org.soyatec.windowsazure.blob.internal.BlobProperties;
import org.soyatec.windowsazure.blob.io.BlobFileStream;
import org.soyatec.windowsazure.blob.io.BlobMemoryStream;
import org.soyatec.windowsazure.internal.util.TimeSpan;

/**
 * UseCase3_4 uses [windowsazure4j] (http://www.windowsazure4j.org/) Java client
 * side library to communicate with a Windows Azure compliant implementation.
 * The implementation is meant for feasibility demonstration.
 *
 * The testing code will be a stand-alone Java application and executes the
 * SAJACC use case scenario flows, and report out progress.
 *
 * The report out can use simple text-based markup for better readability.
 * [Markdown](http://en.wikipedia.org/wiki/Markdown) syntax is chosen for its
 * simplicity and readability. Various markdown conversion tools can be used to
 * concert the output into HTML or other format if desired. The report should
 * highlight texts that corresponds to the SAJACC use case text to show mapping
 * of the implementation to the use case.
 *

NIST SAJACC Working Group Page 71 February 12, 2013

UseCase3_4_Azure.java 2013-01-07

- 2/4 -

import org.soyatec.windowsazure.blob.IBlobContainer;
import org.soyatec.windowsazure.blob.IBlobContents;
import org.soyatec.windowsazure.blob.IBlobProperties;
import org.soyatec.windowsazure.blob.IBlockBlob;
import org.soyatec.windowsazure.blob.internal.BlobContents;
import org.soyatec.windowsazure.blob.internal.BlobProperties;
import org.soyatec.windowsazure.blob.io.BlobFileStream;
import org.soyatec.windowsazure.blob.io.BlobMemoryStream;
import org.soyatec.windowsazure.internal.util.TimeSpan;

/**
 * UseCase3_4 uses [windowsazure4j] (http://www.windowsazure4j.org/) Java client
 * side library to communicate with a Windows Azure compliant implementation.
 * The implementation is meant for feasibility demonstration.
 *
 * The testing code will be a stand-alone Java application and executes the
 * SAJACC use case scenario flows, and report out progress.
 *
 * The report out can use simple text-based markup for better readability.
 * [Markdown](http://en.wikipedia.org/wiki/Markdown) syntax is chosen for its
 * simplicity and readability. Various markdown conversion tools can be used to
 * concert the output into HTML or other format if desired. The report should
 * highlight texts that corresponds to the SAJACC use case text to show mapping
 * of the implementation to the use case.
 *

 */
public class UseCase3_4_Azure {

 /**
 * The entry point of this test driver.
 *
 */
 public static void main(String[] args) {
 // File name of a test file under data directory to be copied
 // to the cloud.
 String objectName = "helloworld.txt";

 // Generate a random container name everytime running the test,
 // to avoid any possible name conflicts.
 Random random = new Random();
 String containerName = "test-container-azure-usecases-3-4"
 + random.nextInt();

 IBlobContainer container = null;
 IBlockBlob blob = null;

 // Handle to windows azure storage
 BlobStorageClient storage = null;

 report("# Windowsazure4j Cloud Computing Use Case Testing Report #");
 report("## 3.4 Copy Blob Data Into A Cloud ##");
 report("Test Scenario - `Success Scenario 1`:");

 /***/
 report("* __The user determines a local file__, `" + objectName
 + "`, __for copying to the windows azure storage.");
 /***/

 try {
 /***/
 // Reading configuration file "azure.properties"
 // from classpath, to be used to instantiate a Windows
 // Azure Storage execution context
 ResourceBundle rb = ResourceBundle.getBundle("azure");
 storage = BlobStorageClient.create(
 URI.create("http://blob.core.windows.net"), false,
 rb.getString("storage-name"), rb.getString("storage-key"));

 report("* The user creates a Windows Azure Storage execution context in "
 + "preparation to issue commands to the windows azure storage "
 + "using pre-acquired credentials.");
 /***/

 /***/
 // Create a container
 container = storage.createContainer(containerName);

NIST SAJACC Working Group Page 72 February 12, 2013

UseCase3_4_Azure.java 2013-01-07

- 3/4 -

 */
public class UseCase3_4_Azure {

 /**
 * The entry point of this test driver.
 *
 */
 public static void main(String[] args) {
 // File name of a test file under data directory to be copied
 // to the cloud.
 String objectName = "helloworld.txt";

 // Generate a random container name everytime running the test,
 // to avoid any possible name conflicts.
 Random random = new Random();
 String containerName = "test-container-azure-usecases-3-4"
 + random.nextInt();

 IBlobContainer container = null;
 IBlockBlob blob = null;

 // Handle to windows azure storage
 BlobStorageClient storage = null;

 report("# Windowsazure4j Cloud Computing Use Case Testing Report #");
 report("## 3.4 Copy Blob Data Into A Cloud ##");
 report("Test Scenario - `Success Scenario 1`:");

 /***/
 report("* __The user determines a local file__, `" + objectName
 + "`, __for copying to the windows azure storage.");
 /***/

 try {
 /***/
 // Reading configuration file "azure.properties"
 // from classpath, to be used to instantiate a Windows
 // Azure Storage execution context
 ResourceBundle rb = ResourceBundle.getBundle("azure");
 storage = BlobStorageClient.create(
 URI.create("http://blob.core.windows.net"), false,
 rb.getString("storage-name"), rb.getString("storage-key"));

 report("* The user creates a Windows Azure Storage execution context in "
 + "preparation to issue commands to the windows azure storage "
 + "using pre-acquired credentials.");
 /***/

 /***/
 // Create a container
 container = storage.createContainer(containerName);

 report("* __The user issues a command to "
 + "create a container__: `" + containerName + "`.");
 /***/

 /***/
 // Create the Azure blob on the windows auzre storage and transfer
 // the local file object
 IBlobProperties blobProperties = new BlobProperties(objectName);
 String contentMD5 = ServiceUtils.toBase64(ServiceUtils
 .computeMD5Hash(new FileInputStream("data/"
 + objectName)));
 blobProperties
 .setContentMD5(contentMD5);

 IBlobContents blobContents = new BlobContents(new BlobFileStream("data/"
 + objectName));
 blob = container.createBlockBlob(blobProperties, blobContents);

 report("* __The user issues a command to "
 + "create a blob in the container created, and "
 + "transfers the local file__ `" + objectName + "`"
 + "__to this blob__.");
 /***/

 /***/
 report("Verifying test result:");

 // Test verification: retrieve the blob created earlier
 IBlockBlob downloadedBlob = storage.getBlobContainer(containerName)
 .getBlockBlobReference(objectName);

 report("* Download Test Blob: " + downloadedBlob + ".");

 // Read downloaded data as a string
 BlobMemoryStream stream = new BlobMemoryStream();
 container.setTimeout(TimeSpan.fromSeconds(300));
 downloadedBlob.getContents(stream);
 String textData = new String(stream.getBytes());

 report("* Download Test Blob converted to string as: " + textData
 + ".");

 // Verify the data downloaded against the source file
 // performing MD5 hash comparison
 String remote = downloadedBlob.getProperties().getContentMD5();
 String local = contentMD5;
 boolean valid = remote.equals(local);

 report("* MD5 hash comparison against source file `" + objectName

NIST SAJACC Working Group Page 73 February 12, 2013

UseCase3_4_Azure.java 2013-01-07

- 4/4 -

 report("Test Scenario - `Success Scenario 1`:");

 /***/
 report("* __The user determines a local file__, `" + objectName
 + "`, __for copying to the windows azure storage.");
 /***/

 try {
 /***/
 // Reading configuration file "azure.properties"
 // from classpath, to be used to instantiate a Windows
 // Azure Storage execution context
 ResourceBundle rb = ResourceBundle.getBundle("azure");
 storage = BlobStorageClient.create(
 URI.create("http://blob.core.windows.net"), false,
 rb.getString("storage-name"), rb.getString("storage-key"));

 report("* The user creates a Windows Azure Storage execution context in "
 + "preparation to issue commands to the windows azure storage "
 + "using pre-acquired credentials.");
 /***/

 /***/
 // Create a container
 container = storage.createContainer(containerName);

 report("* __The user issues a command to "
 + "create a container__: `" + containerName + "`.");
 /***/

 /***/
 // Create the Azure blob on the windows auzre storage and transfer
 // the local file object
 IBlobProperties blobProperties = new BlobProperties(objectName);
 String contentMD5 = ServiceUtils.toBase64(ServiceUtils
 .computeMD5Hash(new FileInputStream("data/"
 + objectName)));
 blobProperties
 .setContentMD5(contentMD5);

 IBlobContents blobContents = new BlobContents(new BlobFileStream("data/"
 + objectName));
 blob = container.createBlockBlob(blobProperties, blobContents);

 report("* __The user issues a command to "
 + "create a blob in the container created, and "
 + "transfers the local file__ `" + objectName + "`"
 + "__to this blob__.");
 /***/

 /***/
 report("Verifying test result:");

 // Test verification: retrieve the blob created earlier
 IBlockBlob downloadedBlob = storage.getBlobContainer(containerName)
 .getBlockBlobReference(objectName);

 report("* Download Test Blob: " + downloadedBlob + ".");

 // Read downloaded data as a string
 BlobMemoryStream stream = new BlobMemoryStream();
 container.setTimeout(TimeSpan.fromSeconds(300));
 downloadedBlob.getContents(stream);
 String textData = new String(stream.getBytes());

 report("* Download Test Blob converted to string as: " + textData
 + ".");

 // Verify the data downloaded against the source file
 // performing MD5 hash comparison
 String remote = downloadedBlob.getProperties().getContentMD5();
 String local = contentMD5;
 boolean valid = remote.equals(local);

 report("* MD5 hash comparison against source file `" + objectName

 + "` returned `" + valid + "`" + ".");
 /***/
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 report("Cleaning up testing blob: `" + objectName + "`.");
 container.deleteBlob(objectName);

 report("Cleaning up testing container: `" + containerName + "`.");
 storage.deleteContainer(containerName);
 }

 }

 public static void report(String message) {
 System.out.println(message + "\n");
 }
}

NIST SAJACC Working Group Page 74 February 12, 2013

1

/* 1
 * DISCLAIMER: Certain commercial entities, equipment, or materials 2
 * may be identified in this document in order to describe an 3
 * experimental procedure or concept adequately. Such identification 4
 * is not intended to imply recommendation or endorsement by the 5
 * National Institute of Standards and Technology, nor is it intended 6
 * to imply that the entities, materials, or equipment are necessarily 7
 * the best available for the purpose. 8
 * 9
 * Design and implementation of this program was paid for by U.S. tax 10
 * dollars. Therefore it is public domain. However, the author and 11
 * NIST would appreciate credit if this program or parts of it are 12
 * used. 13
 * 14
 * $Id: UseCase3_6_S3.java 70 2011-03-01 14:54:46Z tongji $ 15
 */ 16
package sajacc.usecases; 17
 18
import java.io.File; 19
import java.io.InputStream; 20
import java.util.ArrayList; 21
import java.util.List; 22
import java.util.ResourceBundle; 23
 24
import com.amazonaws.auth.AWSCredentials; 25
import com.amazonaws.auth.BasicAWSCredentials; 26
import com.amazonaws.services.ec2.AmazonEC2; 27
import com.amazonaws.services.ec2.AmazonEC2Client; 28
import com.amazonaws.services.ec2.model.DescribeInstancesRequest; 29
import com.amazonaws.services.ec2.model.DescribeInstancesResult; 30
import com.amazonaws.services.ec2.model.Instance; 31
import com.amazonaws.services.ec2.model.Reservation; 32
import com.amazonaws.services.ec2.model.RunInstancesRequest; 33
import com.amazonaws.services.ec2.model.RunInstancesResult; 34
import com.amazonaws.services.ec2.model.TerminateInstancesRequest; 35
import com.jcraft.jsch.Channel; 36
import com.jcraft.jsch.ChannelExec; 37
import com.jcraft.jsch.JSch; 38
import com.jcraft.jsch.Session; 39
import com.jcraft.jsch.UserInfo; 40
 41
/** 42
 * UseCase3_7 uses [AWS SDK for Java] 43
 * (http://aws.amazon.com/sdkforjava/) 44
 * to communicate with an EC2 compliant implementation. 45
 * The implementation is meant for feasibility demonstration. 46
 * 47
 * The testing code will be a stand-alone Java application and 48
 * executes the SAJACC use case scenario flows, and report out 49
 * progress. 50
 * 51
 * The report out can use simple text-based markup for better 52
 * readability. [Markdown](http://en.wikipedia.org/wiki/Markdown) 53
 * syntax is chosen for its simplicity and readability. Various 54
 * markdown conversion tools can be used to concert the output into 55
 * HTML or other format if desired. The report should highlight texts 56
 * that corresponds to the SAJACC use case text to show mapping of the 57
 * implementation to the use case. 58
 * 59
 */ 60
public class UseCase3_7_EC2 { 61
 62
 /** 63
 * The entry point of this test driver. 64
 * 65
 */ 66
 public static void main(String[] args) { 67
 68
 String instanceId = null; 69
 Instance instance = null; 70
 71

NIST SAJACC Working Group Page 75 February 12, 2013

2

 // Handle to an EC2 implementation 72
 AmazonEC2 ec2 = null; 73
 try { 74
 report("# NIST Cloud Computing Use Case Testing Report #"); 75
 report("## 3.7 VM Control: Allocate VM Instance ##"); 76
 report("This test driver implements `Success Scenario 1 " + 77
 "((AllocateVM, IaaS))`" + 78
 "of [Use Case 3.7](http://www.nist.gov/itl/cloud/3_7.cfm) "+ 79
 "using AWS SDK for Java."); 80
 81
 report("Test Scenario - `Success Scenario`:"); 82
 83
 /***/ 84
 // Reading from configuration file "ec2.properties" 85
 // from classpath, to be used to instantiate a client 86
 // instance with the credentials provided. 87
 ResourceBundle rb = ResourceBundle.getBundle ("ec2"); 88
 89
 // Instantiate an instance of the account credentials 90
 // using the access-key and secret-key configured in 91
 // aws.properties file. 92
 AWSCredentials credentials = new 93
 BasicAWSCredentials(rb.getString("accessKey"), 94
 rb.getString("secretKey")); 95
 ec2 = new AmazonEC2Client(credentials); 96
 ec2.setEndpoint(rb.getString("public-url")); 97
 98
 report("* The cloud-subscriber creates a client handle in "+ 99
 "preparation to issue commands to the cloud-provider's "+ 100
 "system using pre-acquired credentials."); 101
 /***/ 102
 103
 // get ready to create an instance of a VM with some 104
 // customizations: 105
 // - using a pre-created public key for root user 106
 // - configure to use a pre-created security policy to allow 107
 // ssh access 108
 // - specify the VM instance type (virtual hardware profile) 109
 String keyName = rb.getString("key-name"); 110
 RunInstancesRequest runRequest = 111
 new RunInstancesRequest(rb.getString("image-id"), 1, 1); 112
 runRequest.withSecurityGroups("ssh").setKeyName(keyName); 113
 runRequest.setInstanceType(rb.getString("instance-type")); 114
 115
 /***/ 116
 report("* __(1) The cloud-subscriber requests a specific " + 117
 "pre-defined Virtual Machine image supplied by the " + 118
 "cloud-provider (O/S, CPU cores, memory, and security) " + 119
 "and launches new VM instances__."); 120
 RunInstancesResult result = ec2.runInstances(runRequest); 121
 122
 List<Instance> instances = result.getReservation().getInstances(); 123
 for (Instance ainstance: instances){ 124
 report(" * Started Instance " + ainstance); 125
 instance = ainstance; 126
 instanceId = ainstance.getInstanceId(); 127
 break; 128
 } 129
 130
 report(" * Waiting for the VM instance: " + instanceId + 131
 " to be ready"); 132
 instance = waitForInstanceState(ec2, instanceId, "running"); 133
 report(" * The VM instance is ready, details: " + instance); 134
 135
 // Wait for 1 minute to give the sshd service some time to start 136
 // up properly. Depending on the processing power, sshd sometimes 137
 // takes a while to start. 138
 Thread.sleep(60000); 139
 140
 // Issuing command through SSH 141
 report("* __(3) The cloud-subscriber has secure " + 142

NIST SAJACC Working Group Page 76 February 12, 2013

3

 "launching and administration of their VM " + 143
 "instance__."); 144
 report(" * The cloud-subscriber issues shell command " + 145
 "`uname -a; uptime` through SSH session " + 146
 "extablished to the VM instance using the " + 147
 "private key from key pair:." + keyName); 148
 149
 report(" * Shell command returns: `" + 150
 runSsh(instance.getPublicDnsName(), 151
 rb.getString("default-user-id"), 152
 rb.getString("ssh-user-private-key-file"), 153
 "uname -a; uptime") + 154
 "`"); 155
 156
 } catch (Exception anyOtherEx) { 157
 anyOtherEx.printStackTrace(); 158
 } finally { 159
 try { 160
 if (instanceId != null) 161
 { 162
 report("Cleaning up: Terminate the running VM "+ 163
 "instance: `" + instanceId + "`."); 164
 TerminateInstancesRequest terminateRequest = 165
 new TerminateInstancesRequest(). 166
 withInstanceIds(instanceId); 167
 ec2.terminateInstances(terminateRequest); 168
 waitForInstanceState(ec2, instanceId, "terminated"); 169
 report("* Instance terminated."); 170
 } 171
 } catch (Exception e) { 172
 e.printStackTrace(); 173
 } 174
 } 175
 } 176
 177
 public static void report(String message) { 178
 System.out.println(message + "\n"); 179
 } 180
 181
 // Helper method to check the state of the vm and return when the 182
 // VM state is at wanted state 183
 private static Instance waitForInstanceState(AmazonEC2 ec2, 184
 String instanceId, 185
 String state) { 186
 187
 DescribeInstancesRequest request = 188
 new DescribeInstancesRequest().withInstanceIds(instanceId); 189
 190
 // Checking state and sleep 1 second if state is not desired state. 191
 // Return null after waiting for 300x1 seconds. 192
 for (int i = 0 ; i < 300 ; i++) { 193
 DescribeInstancesResult describeInstancesRequest = 194
 ec2.describeInstances(request); 195
 196
 List<Reservation> reservations = 197
 describeInstancesRequest.getReservations(); 198
 199
 List<Instance> instances = new ArrayList<Instance>(); 200
 201
 for (Reservation reservation : reservations) { 202
 instances.addAll(reservation.getInstances()); 203
 } 204
 if (instances.size() == 1) { 205
 if (instances.get(0).getState().getName().equals(state)) { 206
 return instances.get(0); 207
 } 208
 } 209
 else { 210
 break; 211
 } 212
 try { 213

NIST SAJACC Working Group Page 77 February 12, 2013

4

 Thread.sleep(5000L); 214
 } catch (InterruptedException e) { 215
 e.printStackTrace(); 216
 } 217
 } 218
 return null; 219
 } 220
 221
 private static String runSsh(String host, 222
 String user, 223
 String privateKeyFileName, 224
 String command) throws Exception { 225
 226
 report(" * Issue command:" + command + " to " + user + "@" + host); 227
 JSch jsch = new JSch(); 228
 229
 File file = new File("config/" + privateKeyFileName); 230
 231
 jsch.addIdentity(file.getAbsolutePath()); 232
 233
 Session session = jsch.getSession(user, host, 22); 234
 session.setUserInfo(new MyUserInfo()); 235
 236
 // To bypass public key verification of the newly created 237
 // host. In practice, the public key from the sshd on the 238
 // newly launched VM should be obtained through a secure 239
 // channel. 240
 java.util.Properties config = new java.util.Properties(); 241
 config.put("StrictHostKeyChecking", "no"); 242
 session.setConfig(config); 243
 244
 session.connect(); 245
 Channel channel = session.openChannel("exec"); 246
 247
 ((ChannelExec) channel).setCommand(command); 248
 channel.setInputStream(null); 249
 250
 InputStream in = channel.getInputStream(); 251
 252
 ((ChannelExec)channel).setErrStream(System.err); 253
 channel.connect(); 254
 255
 String retString = new String(); 256
 byte[] tmp=new byte[1024]; 257
 258
 while(true){ 259
 while(in.available()>0){ 260
 int i=in.read(tmp, 0, 1024); 261
 if(i<0)break; 262
 retString += new String(tmp, 0, i); 263
 } 264
 if(channel.isClosed()){ 265
 break; 266
 } 267
 try{Thread.sleep(1000);}catch(Exception ee){} 268
 } 269
 270
 channel.disconnect(); 271
 session.disconnect(); 272
 273
 return retString; 274
 } 275
 276
 public static class MyUserInfo implements UserInfo { 277
 278
 public MyUserInfo() { 279
 super(); 280
 } 281
 282
 @Override 283
 public String getPassphrase() { 284

NIST SAJACC Working Group Page 78 February 12, 2013

5

 return null; 285
 } 286
 287
 @Override 288
 public String getPassword() { 289
 return null; 290
 } 291
 292
 @Override 293
 public boolean promptPassphrase(String arg0) { 294
 return false; 295
 } 296
 297
 @Override 298
 public boolean promptPassword(String arg0) { 299
 return false; 300
 } 301
 302
 @Override 303
 public boolean promptYesNo(String arg0) { 304
 return true; 305
 } 306
 307
 @Override 308
 public void showMessage(String arg0) { 309
 } 310
 } 311
} 312

NIST SAJACC Working Group Page 79 February 12, 2013

1

/* 1
 * DISCLAIMER: Certain commercial entities, equipment, or materials 2
 * may be identified in this document in order to describe an 3
 * experimental procedure or concept adequately. Such identification 4
 * is not intended to imply recommendation or endorsement by the 5
 * National Institute of Standards and Technology, nor is it intended 6
 * to imply that the entities, materials, or equipment are necessarily 7
 * the best available for the purpose. 8
 * 9
 * Design and implementation of this program was paid for by U.S. tax 10
 * dollars. Therefore it is public domain. However, the author and 11
 * NIST would appreciate credit if this program or parts of it are 12
 * used. 13
 * 14
 */ 15
package sajacc.usecases; 16
 17
import java.io.File; 18
import java.io.InputStream; 19
import java.util.ArrayList; 20
import java.util.List; 21
import java.util.ResourceBundle; 22
import java.util.regex.Pattern; 23
import java.util.regex.Matcher; 24
 25
import org.apache.http.auth.AuthScope; 26
import org.apache.http.auth.UsernamePasswordCredentials; 27
import org.apache.http.client.methods.HttpDelete; 28
import org.apache.http.client.methods.HttpGet; 29
import org.apache.http.client.methods.HttpPost; 30
import org.apache.http.client.protocol.ClientContext; 31
import org.apache.http.HttpHost; 32
import org.apache.http.util.EntityUtils; 33
import org.apache.http.entity.StringEntity; 34
import org.apache.http.impl.auth.BasicScheme; 35
import org.apache.http.impl.client.BasicAuthCache; 36
import org.apache.http.impl.client.DefaultHttpClient; 37
import org.apache.http.message.BasicHeader; 38
import org.apache.http.protocol.BasicHttpContext; 39
import org.apache.http.protocol.HTTP; 40
 41
import com.jcraft.jsch.Channel; 42
import com.jcraft.jsch.ChannelExec; 43
import com.jcraft.jsch.JSch; 44
import com.jcraft.jsch.Session; 45
import com.jcraft.jsch.UserInfo; 46
 47
/** 48
 * UseCase3_7_OCCI uses [Apache HttpComponents] 49
 * (http://hc.apache.org/httpcomponents-client-ga/) as a client side 50
 * HTTP client library to communicate with an OCCI interface 51
 * endpoint. This test driver is written and tested against an OCCI 52
 * interface endpoint exposed through an OpenNebula (v2.2) 53
 * installation. Some OCCI communication messages are OpenNebula 54
 * environment specific. 55
 * 56
 * The testing code will be a stand-alone Java application and 57
 * executes the SAJACC use case scenario flows, and reports out 58
 * progress. 59
 * 60
 * The report out uses simple text-based markup for better 61
 * readability. [Markdown](http://en.wikipedia.org/wiki/Markdown) 62
 * syntax is chosen for its simplicity and readability. Various 63
 * markdown conversion tools can be used to concert the output into 64
 * HTML or other format if desired. The report should highlight texts 65
 * that corresponds to the SAJACC use case text to show mapping of the 66
 * implementation to the use case. 67
 * 68
 * @author Knowcean Consulting, Prepared for NIST SAJACC Project 69
 * @author NIST 70
 */ 71

NIST SAJACC Working Group Page 80 February 12, 2013

2

public class UseCase3_7_OCCI { 72
 73
 /** 74
 * The entry point of this test driver. 75
 * 76
 */ 77
 public static void main(String[] args) { 78
 79
 String instanceId = null; 80
 81
 report("# NIST Cloud Computing Use Case Testing Report #"); 82
 report("## 3.7 VM Control: Allocate VM Instance ##"); 83
 report("This test driver implements `Success Scenario 1 " + 84
 "((AllocateVM, IaaS))`" + 85
 "of [Use Case 3.7](http://www.nist.gov/itl/cloud/3_7.cfm) "+ 86
 "using OCCI API."); 87
 88
 report("Test Scenario - `Success Scenario`:"); 89
 90
 /***/ 91
 // Reading from configuration file "occi.properties" 92
 // from classpath, to be used to instantiate client 93
 // requests with the credentials provided. 94
 ResourceBundle rb = ResourceBundle.getBundle ("occi"); 95
 96
 // Retrieve all relevant environment specific properties 97
 // configured. 98
 99
 // Credentials 100
 String occiUserName = rb.getString("occi-username"); 101
 String occiUserPassword = rb.getString("occi-password"); 102
 103
 // occi endpoint URL 104
 String occiPublicUrl = rb.getString("public-url"); 105
 106
 // ==================================== 107
 // compute related sources 108
 // ==================================== 109
 110
 // instance type of the compute resource 111
 String instanceType = rb.getString("instance-type"); 112
 113
 // network identifier for network resources that are 114
 // previously provisioned. 115
 String networkResourceId = rb.getString("network-id"); 116
 117
 // storage identifier for storage resources that are 118
 // previously provisioned. In the case of OpenNebula, this is 119
 // the storage resource ("image") that is a bootable OS image. 120
 String storageResourceId = rb.getString("storage-id"); 121
 122
 // ==================================== 123
 // target compute resource requirements 124
 // ==================================== 125
 126
 // type of compute resource 127
 String computeResourceNumberOfCPU = 128
 rb.getString("compute-number-of-cpu"); 129
 String computeResourceMemory = 130
 rb.getString("compute-memory"); 131
 132
 // OpenNebula supports the request of assigning a public IP to 133
 // a compute resource, assuming it is already under the 134
 // control on the server side. 135
 String computeResourcePublicIP = rb.getString("public-ip"); 136
 137
 // ==================================== 138
 // customization properties 139
 // ==================================== 140
 141
 // OpenNebua supports customizing the VM instance using 142

NIST SAJACC Working Group Page 81 February 12, 2013

3

 // contextualization data, including some initial scripts 143
 // to run and user public key for ssh access, which are 144
 // stored on the cloud server already. This section might 145
 // be OpenNebula specific and can be passed through OCCI 146
 // interface. 147
 // 148
 String customizationDataPath = 149
 rb.getString("contextualization-data"); 150
 String vmUserName = 151
 rb.getString("vm-user-name"); 152
 String vmUserPublicKey = 153
 rb.getString("vm-user-public-key-file"); 154
 try { 155
 /***/ 156
 report("* __(1) The cloud-subscriber requests a specific " + 157
 "pre-defined Virtual Machine image supplied by the " + 158
 "cloud-provider (O/S, CPU cores, memory, and security) " + 159
 "and launches new VM instances__."); 160
 161
 // ==================================== 162
 // compose a compute resource creation request 163
 // ==================================== 164
 String occiComputeResourceCreationRequest = 165
 "<COMPUTE>" + 166
 " <NAME>sajacc-test-vm</NAME>" + 167
 " <INSTANCE_TYPE>" + instanceType + "</INSTANCE_TYPE>" + 168
 " <DISK>" + 169
 " <STORAGE href=\"" + 170
 occiPublicUrl + "/storage/" + storageResourceId + "\"/>" + 171
 " </DISK>" + 172
 " <NIC>" + 173
 " <NETWORK href=\"" + 174
 occiPublicUrl + "/network/" + networkResourceId + "\"/>" + 175
 " </NIC>" + 176
 " <CONTEXT>" + 177
 " <HOSTNAME>sajacc-test-vm</HOSTNAME>" + 178
 " <IP_PUBLIC>" + computeResourcePublicIP + "</IP_PUBLIC>" + 179
 " <FILES>" + customizationDataPath + "</FILES>" + 180
 " <TARGET>hdc</TARGET>" + 181
 //" <ROOT_PUBKEY>" + vmUserPublicKey + "</ROOT_PUBKEY>" + 182
 " <USERNAME>" + vmUserName + "</USERNAME>" + 183
 " <USER_PUBKEY>" + vmUserPublicKey + "</USER_PUBKEY>" + 184
 " </CONTEXT>" + 185
 "</COMPUTE>"; 186
 187
 String cloudResponse = 188
 httpPostToCloud(occiPublicUrl + "/compute", 189
 occiUserName, 190
 occiUserPassword, 191
 occiComputeResourceCreationRequest); 192
 193
 instanceId = regexExtract(".*<ID>(.*)</ID>.*", cloudResponse); 194
 if ("".equals(instanceId)) { 195
 throw new Exception("Failed to create vm: " + cloudResponse); 196
 } 197
 report(" * Started Instance `" + instanceId + "`"); 198
 199
 String instance = 200
 waitForInstanceState(occiPublicUrl + "/compute/" + instanceId, 201
 occiUserName, 202
 occiUserPassword, 203
 "ACTIVE"); 204
 205
 report(" * The VM instance is ready, details: `" + 206
 instance + "`"); 207
 208
 // Wait for 1 minute to give the sshd service some time to 209
 // start up properly. Depending on the processing power, 210
 // sshd sometimes takes a while to start. 211
 Thread.sleep(60000); 212
 213

NIST SAJACC Working Group Page 82 February 12, 2013

4

 // Issuing command through SSH 214
 report("* __(3) The cloud-subscriber has secure " + 215
 "launching and administration of their VM " + 216
 "instance__."); 217
 report(" * The cloud-subscriber issues shell command " + 218
 "`uname -a; uptime` through SSH session " + 219
 "established to the VM instance using the " + 220
 "private key from key pair."); 221
 222
 report(" * Shell command returns: `" + 223
 runSsh(computeResourcePublicIP, 224
 vmUserName, 225
 rb.getString("vm-user-private-key-file"), 226
 "uname -a; uptime") + 227
 "`"); 228
 229
 } catch (Exception anyOtherEx) { 230
 anyOtherEx.printStackTrace(); 231
 } finally { 232
 try { 233
 if (instanceId != null) 234
 { 235
 report("Cleaning up: Terminate the running VM "+ 236
 "instance: `" + instanceId + "`."); 237
 httpDeleteFromCloud(occiPublicUrl + 238
 "/compute/" + 239
 instanceId, 240
 occiUserName, 241
 occiUserPassword); 242
 report("* Instance terminated."); 243
 } 244
 } catch (Exception e) { 245
 e.printStackTrace(); 246
 } 247
 } 248
 } 249
 250
 public static void report(String message) { 251
 System.out.println(message + "\n"); 252
 } 253
 254
 // Helper method to extract a sub-string from a piece of text 255
 // using a regular expression. 256
 private static String regexExtract(String regex, String source) { 257
 Pattern p = Pattern.compile(regex); 258
 Matcher m = p.matcher(source); 259
 if (m.matches()) { 260
 return m.group(1); 261
 } 262
 else { 263
 return ""; 264
 } 265
 } 266
 267
 // Helper method to check the state of the vm and return when the 268
 // VM state is at wanted state. It polls the httpGetUrl endpoint 269
 // by issuing HTTP GET requests and sleeps a bit between each 270
 // poll. Bails out and throws an Exception is waited for too long. 271
 private static String waitForInstanceState(String httpGetUrl, 272
 String httpUsername, 273
 String httpUserPassword, 274
 String state) 275
 throws Exception 276
 { 277
 278
 // Checking state and sleep 6 seconds if state is not desired state. 279
 // Return null after waiting for 20x6 seconds. 280
 for (int i = 0 ; i < 20 ; i++) { 281
 String httpGetResponse = 282
 httpGetFromCloud(httpGetUrl, 283
 httpUsername, 284

NIST SAJACC Working Group Page 83 February 12, 2013

5

 httpUserPassword); 285
 String currentState = regexExtract(".*<STATE>(.*)</STATE>.*", 286
 httpGetResponse); 287
 288
 if (state.equalsIgnoreCase(currentState)) { 289
 return httpGetResponse; 290
 } 291
 292
 try { 293
 Thread.sleep(6000L); 294
 } catch (InterruptedException e) { 295
 e.printStackTrace(); 296
 } 297
 } 298
 throw new Exception("Timed out waiting for instance state " + state); 299
 } 300
 301
 // Helper method to create an HTTP client object. 302
 private static DefaultHttpClient getHttpClient(String username, 303
 String password) 304
 throws Exception { 305
 DefaultHttpClient client = new DefaultHttpClient(); 306
 client.getCredentialsProvider(). 307
 setCredentials(new AuthScope(AuthScope.ANY_HOST, AuthScope.ANY_PORT), 308
 new UsernamePasswordCredentials(username, password)); 309
 return client; 310
 } 311
 312
 // HTTP context object to facilitate establishing an HTTP 313
 // authentication context. 314
 private static BasicHttpContext localContext = new BasicHttpContext(); 315
 private static BasicHttpContext getHttpContext() { 316
 return localContext; 317
 } 318
 319
 // Helper method to parse out the endpoint URL to create an 320
 // HttpHost object in HTTP authentication communication. 321
 private static HttpHost getTargetHost(String url) { 322
 String host = regexExtract("^http[s]?://([^/:]*)[:]?([0-9]+)?.*", url); 323
 String portStr = regexExtract("^http[s]?://[^/:]*[:]?([0-9]+)?.*", url); 324
 325
 HttpHost retVal = null; 326
 if ("".equals(portStr)) { 327
 retVal = new HttpHost(host); 328
 } 329
 else { 330
 retVal = new HttpHost(host, Integer.parseInt(portStr)); 331
 } 332
 333
 // update context to force basic auth for target 334
 BasicAuthCache authCache = new BasicAuthCache(); 335
 BasicScheme basicAuth = new BasicScheme(); 336
 authCache.put(retVal, basicAuth); 337
 getHttpContext().setAttribute(ClientContext.AUTH_CACHE, authCache); 338
 339
 return retVal; 340
 } 341
 342
 // Helper method to do an HTTP POST to the URL endpoint and use 343
 // HTTP authentication. 344
 private static String httpPostToCloud(String url, 345
 String username, 346
 String password, 347
 String entityStr) throws Exception { 348
 349
 DefaultHttpClient client = getHttpClient(username, password); 350
 HttpPost httpPost = new HttpPost(url); 351
 StringEntity entity = new StringEntity(entityStr); 352
 entity.setContentType(new BasicHeader(HTTP.CONTENT_TYPE, "text/xml")); 353
 httpPost.setEntity(entity); 354
 return EntityUtils.toString(client.execute(getTargetHost(url), 355

NIST SAJACC Working Group Page 84 February 12, 2013

6

 httpPost, 356
 getHttpContext() 357
).getEntity()); 358
 } 359
 360
 // Helper method to do an HTTP GET to the URL endpoint and use 361
 // HTTP authentication. 362
 private static String httpGetFromCloud(String url, 363
 String username, 364
 String password) 365
 throws Exception { 366
 DefaultHttpClient client = getHttpClient(username, password); 367
 HttpGet httpGet = new HttpGet(url); 368
 return EntityUtils.toString(client.execute(getTargetHost(url), 369
 httpGet, 370
 getHttpContext() 371
).getEntity()); 372
 } 373
 374
 // Helper method to do an HTTP DELETE to the URL endpoint and use 375
 // HTTP authentication. 376
 private static void httpDeleteFromCloud(String url, 377
 String username, 378
 String password) 379
 throws Exception { 380
 DefaultHttpClient client = getHttpClient(username, password); 381
 HttpDelete httpDelete = new HttpDelete(url); 382
 client.execute(getTargetHost(url), 383
 httpDelete, 384
 getHttpContext()); 385
 } 386
 387
 // Helper method to run an command through an SSH session to the 388
 // HOST using the user name and private key provided. The method 389
 // returns the console print out on the remote SSH session. 390
 private static String runSsh(String host, 391
 String user, 392
 String privateKeyFileName, 393
 String command) throws Exception { 394
 395
 report(" * Issue command:" + command + " to " + user + "@" + host); 396
 JSch jsch = new JSch(); 397
 398
 File file = new File("config/" + privateKeyFileName); 399
 400
 jsch.addIdentity(file.getAbsolutePath()); 401
 402
 Session session = jsch.getSession(user, host, 22); 403
 session.setUserInfo(new MyUserInfo()); 404
 405
 // To by pass public key verification of the newly created 406
 // host. In practice, the public key from the sshd on the 407
 // newly launched VM should be obtained through a secure 408
 // channel. 409
 java.util.Properties config = new java.util.Properties(); 410
 config.put("StrictHostKeyChecking", "no"); 411
 session.setConfig(config); 412
 413
 session.connect(); 414
 Channel channel = session.openChannel("exec"); 415
 416
 ((ChannelExec) channel).setCommand(command); 417
 channel.setInputStream(null); 418
 419
 InputStream in = channel.getInputStream(); 420
 421
 ((ChannelExec)channel).setErrStream(System.err); 422
 channel.connect(); 423
 424
 String retString = new String(); 425
 byte[] tmp=new byte[1024]; 426

NIST SAJACC Working Group Page 85 February 12, 2013

7

 427
 while(true){ 428
 while(in.available()>0){ 429
 int i=in.read(tmp, 0, 1024); 430
 if(i<0)break; 431
 retString += new String(tmp, 0, i); 432
 } 433
 if(channel.isClosed()){ 434
 break; 435
 } 436
 try{Thread.sleep(1000);}catch(Exception ee){} 437
 } 438
 439
 channel.disconnect(); 440
 session.disconnect(); 441
 442
 return retString.replaceAll("[\r]", ""); 443
 } 444
 445
 // Helper class to facilitate the authentication call back for 446
 // establishing the SSH session, required by JSCH library. 447
 public static class MyUserInfo implements UserInfo { 448
 449
 public MyUserInfo() { 450
 super(); 451
 } 452
 453
 @Override 454
 public String getPassphrase() { 455
 return null; 456
 } 457
 458
 @Override 459
 public String getPassword() { 460
 return null; 461
 } 462
 463
 @Override 464
 public boolean promptPassphrase(String arg0) { 465
 return false; 466
 } 467
 468
 @Override 469
 public boolean promptPassword(String arg0) { 470
 return false; 471
 } 472
 473
 @Override 474
 public boolean promptYesNo(String arg0) { 475
 return true; 476
 } 477
 478
 @Override 479
 public void showMessage(String arg0) { 480
 } 481
 } 482
} 483

NIST SAJACC Working Group Page 86 February 12, 2013

References
[Cockburn] Writing Effective Use Cases, Cockburn,Alistair, Addison-Wesley, 2001. Draft
versions widely available on internet, e.g.,
http://www.infor.uva.es/~mlaguna/is1/materiales/BookDraft1.pdf.

[DMTF] “Use Cases and Interactions for Managing Clouds”, Version 1.0.0, 2010-06-18,
document number: DSP-IS0103, http://dmtf.org/sites/default/files/standards/documents/DSP-
IS0103_1.0.0.pdf; “Interoperable Clouds, A White Paper from the Open Cloud Standards
Incubator”, Version 1.0.0, 2009-11-11, document number: DSP-ISO101,
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf

[IETF-SCIM] Draft use cases for System for Cross-domain Identity Management (SCIM), under
development within the IETF, http://tools.ietf.org/html/draft-zeltsan-scim-use-cases-00

[LIBCLOUD] Apache "LibCloud" is currently undergoing Incubation at the Apache Software
Foundation, http://incubator.apache.org/libcloud/

[NSTIC] “National Strategy for Trusted Identities in Cyberspace, Creating Options for Enhanced
Online Security and Privacy”, June 25, 2010, http://www.dhs.gov/xlibrary/assets/ns_tic.pdf

[OGF] "Open Cloud Computing Interface - Use cases and requirements for a Cloud API", Jan.
2010, http://ogf.org/documents/GFD.162.pdf

[ORACLE] Oracle Cloud Business Support Use Cases, v0.4,
http://collaborate.nist.gov/twiki-cloud-
computing/pub/CloudComputing/SAJACCTeleConf25/Oracle_Cloud_Business_Support_Use_C
ases_v0.4.pdf

[SNIA] “Cloud Storage Use Cases”, Storage Network Industry Association, Version 0.5 rev 0,
June 8, 2009, http://www.snia.org/tech_activities/publicreview/CloudStorageUseCasesv0.5.pdf

[TMFORUM] Enabling End-to-End Cloud SLA Management, Version 0.4, September 2012,
TR178, http://www.tmforum.org/TechnicalReports/TR178EnablingEndtoEnd/50148/article.html

